scholarly journals Dual Pump Recovery (DPR) System to Extract Freshwater in Coastal Aquifers

2002 ◽  
Vol 7 (2) ◽  
pp. 73
Author(s):  
C. Otto

The paper describes the hydraulic theory of recovering a dense plume using a newly devised dual pump recover system (DPR) and its feasibility to half the remediation time of a contaminated unconfined aquifer in a coastal urban environment. Although the DPR system was successfully applied to clean up the polluted aquifer, the hydraulic principles and techniques are also applicable to extract fresh groundwater from coastal aquifers without the risk of saltwater incursion. 

Author(s):  
Daniel Zamrsky ◽  
Gualbert Oude Essink ◽  
Edwin Sutanudjaja ◽  
Rens van Beek ◽  
Marc F P Bierkens

Abstract Coastal areas worldwide are often densely populated and host regional agricultural and industrial hubs. Strict water quality requirements for agricultural, industrial and domestic use are often not satisfied by surface waters in coastal areas and consequently lead to over-exploitation of local fresh groundwater resources. Additional pressure by both climate change and population growth further intensifies the upcoming water stress and raise the urgency to search for new fresh water sources. In recent years, offshore fresh groundwater reserves have been identified as such a potential water source. In this study, we quantify, for the first time, the global volume of offshore fresh groundwater in unconsolidated coastal aquifers and show that it is a viable option as additional fresh water source in coastal areas. Our results confirm previously reported widespread presence of offshore fresh groundwater along the global coastline. Furthermore, we find that these reserves are likely non-renewable as they were deposited during glacial periods when sea levels were substantially lower compared to current sea level. We estimate the total offshore fresh groundwater volume in unconsolidated coastal aquifers to be approximately 1.06 ± 0.2 million km³, which is roughly three times more than estimated previously and about 10% of all terrestrial fresh groundwater. With extensive active and inactive offshore oil pumping present in areas of large offshore fresh groundwater reserves, they could be considered for temporary fresh groundwater exploration as part of a transition to sustainable water use in coastal areas on the long run.


2021 ◽  
Author(s):  
Maria Elisa Travaglino ◽  
Pietro Teatini

<p>Saltwater intrusion in coastal aquifers is one of the most challenging and worldwide environmental problems, severely affected by human activities and climate change. It represents a threat to the quality and sustainability of fresh groundwater resources in coastal aquifers. Saline water is the most common pollutant in fresh groundwater which can also compromise the agriculture and the economy of the affected regions. Therefore, it is necessary to develop engineering solutions to restore groundwater quality or at least to prevent further degradation of its quality.</p><p>For this purpose, the goal of the Interreg Italy – Croatia MoST (MOnitoring Sea-water intrusion in coastal aquifers and Testing pilot projects for its mitigation) project is to test possible solutions (such as underground barriers, cut-off walls, recharge wells and recharge drains) against saltwater intrusion properly supported by field characterization, laboratory experiments, monitoring of hydrological parameters, and numerical models.</p><p>This works shows the preliminary results of an ongoing modelling study carried out for a coastal farmland at Ca’ Pasqua, in the southern part of the Venice lagoon, in Italy. A three-dimensional finite-element density-dependent groundwater flow and transport model is developed to simulate the dynamics of saltwater intrusion in this lowlying area. The model is used to assess the potential effects of a recharge drain recently established at 1.5 m depth along a sandy paleochannel crossing the organic-silty area. The goal of the intervention is to mitigate the soil and groundwater salinization by spreading freshwater supplied by a nearby canal. The beneficial consequences of the recharge drain should be enhanced by the higher permeability of the paleochannel.</p>


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2467 ◽  
Author(s):  
Mohammed S. Hussain ◽  
Hany F. Abd-Elhamid ◽  
Akbar A. Javadi ◽  
Mohsen M. Sherif

Seawater intrusion (SWI) is one of the most challenging and widespread environmental problems that threaten the quality and sustainability of fresh groundwater resources in coastal aquifers. The excessive pumping of groundwater, associated with the lack of natural recharge, has exacerbated the SWI problem in arid and semi-arid regions. Therefore, appropriate management strategies should be implemented in coastal aquifers to control the impacts of SWI problems, considering acceptable limits of economic and environmental costs. The management of coastal aquifers involves the identification of an acceptable ultimate landward extent of the saline water body and the calculation of the amount of seaward discharge of freshwater that is necessary to keep the saline–freshwater interface in a seacoast position. This paper presents a comprehensive review of available hydraulic and physical management strategies that can be used to reduce and control SWI in coastal aquifers. Advantages and disadvantages of the different approaches are presented and discussed.


2018 ◽  
Vol 54 ◽  
pp. 00004
Author(s):  
Yawen Chang ◽  
Bill X. Hu ◽  
Xue Li

In this study, a two-dimensional SEAWAT 2000 model is developed to simulate the seawater intrusion to coastal aquifers and brine water/fresh water interaction in the south of Laizhou Bay, Shandong Province, China and forecast the seawater intrusion and brine water/freshwater interface development in the coming years. The model profile is perpendicular to the coastal line, about 40 km long and 110 m in depth, and consists of two interfaces, freshwater-saline water interface and brine water-saline water-seawater interface. The parameters of aquifers in the SEAWAT-2000 model are calibrated by trial-error method repeatedly to fit the head and salinity measurements. Based on the historical groundwater and brine water exploration and natural precipitation condition, the prediction results indicate that equivalent freshwater head in shallow freshwater-saline water area will decrease year by year and decline 2.0 m in the forecasting period, caused by groundwater over-pumping for irrigating farmlands. The groundwater head in the brine-saline water area will also decrease about 1.8 m in forecasting period. A larger depression cone appears in the brine area, with smaller funnels in other areas. The salinity in the brine area finally drops below 105g/l. In the meanwhile, the salinity increases in other areas, damage fresh groundwater resources.


2018 ◽  
Vol 10 (3) ◽  
pp. 1591-1603 ◽  
Author(s):  
Daniel Zamrsky ◽  
Gualbert H. P. Oude Essink ◽  
Marc F. P. Bierkens

Abstract. Knowledge of aquifer thickness is crucial for setting up numerical groundwater flow models to support groundwater resource management and control. Fresh groundwater reserves in coastal aquifers are particularly under threat of salinization and depletion as a result of climate change, sea-level rise, and excessive groundwater withdrawal under urbanization. To correctly assess the possible impacts of these pressures we need better information about subsurface conditions in coastal zones. Here, we propose a method that combines available global datasets to estimate, along the global coastline, the aquifer thickness in areas formed by unconsolidated sediments. To validate our final estimation results, we collected both borehole and literature data. Additionally, we performed a numerical modelling study to evaluate the effects of varying aquifer thickness and geological complexity on simulated saltwater intrusion. The results show that our aquifer thickness estimates can indeed be used for regional-scale groundwater flow modelling but that for local assessments additional geological information should be included. The final dataset has been made publicly available (https://doi.pangaea.de/10.1594/PANGAEA.880771).


2002 ◽  
Vol 7 (2) ◽  
pp. 61 ◽  
Author(s):  
M.M. Sherif ◽  
V.P. Singh

Many aquifers around the globe are located in coastal areas and are thus subjected to the seawater intrusion phenomenon. The growth of population in coastal areas and the conjugate increase in human, agricultural, and industrial activities have imposed an increasing demand for freshwater. This increase in water demand is often covered by extensive pumping of fresh groundwater, causing subsequent lowering of the water table (or piezometric head) and upsetting the dynamic balance between freshwater and saline water bodies. The classical result of such a development is seawater intrusion. This paper presents a review for the seawater intrusion phenomenon in coastal aquifers. The effect of pumping activities on the seawater intrusion in the Nile Delta aquifer of Egypt is investigated. It was concluded that any additional pumping should be located in the middle Delta and avoided in the eastern and western sides of the Delta. 


2018 ◽  
Author(s):  
Daniel Zamrsky ◽  
Gualbert H. P. Oude Essink ◽  
Marc F. P. Bierkens

Abstract. Knowledge of the thickness of aquifers is crucial for setting up numerical groundwater flow models in support of the management and control of groundwater resources. Fresh groundwater reserves in coastal aquifers are particularly under threat of salinization and depletion as a result of climate change, sea-level rise, and excessive groundwater withdrawal under urbanization. To correctly assess the possible impacts of these pressures we must have better information about subsurface conditions in coastal zones. Here, we propose a method that combines available global datasets to estimate, along the global coastline, the thickness of aquifers formed by unconsolidated sediments. To validate our final estimation results, we collected both borehole and literature data. Additionally, we performed a numerical modelling study of the effects of varying aquifer thickness and geological complexity on simulated saltwater intrusion. The results show that our aquifer thickness estimates can indeed be used for regional scale groundwater flow modelling but that for local assessments additional geological information should be included. The final dataset can be downloaded via https://doi.pangaea.de/10.1594/PANGAEA.880771.


2021 ◽  
Author(s):  
Giorgio De Giorgio ◽  
Livia Emanuela Zuffianò ◽  
Maurizio Polemio

<p>The progressive population growth in coastal areas constitutes a huge worldwide problem, particularly relevant for coastal aquifers of the Mediterranean basin.</p><p>The increasing use of groundwater and the effect of seawater intrusion makes the study of coastal aquifers extremely relevant.</p><p>There are various measures, practices, and actions throughout the world for managing groundwater when this natural resource is subject to salinization risk.</p><p>This research focused on the seawater intrusion, classifies the different practical solutions protecting the groundwater through salinization mitigation and/or groundwater salinity improvements along the Mediterranean Area.</p><p>The literature review was based on 300 papers, which are mainly international journal articles (76%). The rest includes conference papers (11.8%), reports and theses (7%), and books or chapters of a book (25%).</p><p>Three main schematic groundwater management approaches can be distinguished for the use of groundwater resources at risk of salinization.</p><p>The <strong>engineering approaches</strong> pursue locally the discharge increase avoiding or controlling the salinity increase.</p><p>The most recent experiences of tapping submarine springs were realized using underground concrete dams, tools shaped like a parachute or tulip, or a fiberglass telescopic tube-bell, especially in the case of karstic aquifers.</p><p>The current widespread form of the engineering approach is to address the issue of groundwater exploitation by wells.</p><p>More complex solutions use subhorizontal designs. Subhorizontal tapping schemes were realized using tunneling and/or boring in combination with wide-diameter wells or shafts.</p><p>These works include horizontal drains or radial tunnels bored inside the saturated aquifer, shafts excavated down to the sea level with radial galleries or drains realized together with weirs to improve the regulation of the discharge rate and of salinization. Application of these solutions in areas where a thin fresh groundwater lens floats on the saline groundwater, as in the case of narrow and highly permeable islands, can yield high discharges, thus causing a very low drawdown over very wide areas. These solutions were successfully applied in Malta Islands.</p><p>The <strong>discharge management approach</strong> encompasses at least an entire coastal aquifer and defines rules concerning groundwater utilization and well discharge.</p><p>A multi-methodological approach based on monitoring networks, spatiotemporal analysis of groundwater quality changes, and multiparameter well logging is described in Apulian karstic coastal aquifers (Italy). The core is the definition of the salinity threshold value between pure fresh groundwater and saline groundwater mixture. The basic tools were defined to be simple and cost-effective to be applicable to the widest range of situations.</p><p>The <strong>water and land management approach</strong> should be applied on a regional scale. The main choice for this approach is pursuing water-saving measures and water demand adaptation. A multiple-users and multiple-resources-water supply system model was implemented to evaluate the effectiveness of the increasing maximum capacity of the surface reservoir and managed aquifer recharge in Apulia, a semi-arid region of Southern Italy.</p>


Author(s):  
Saber M. Elsayed ◽  
Hocine Oumeraci ◽  
Nils Goseberg

Europe and many other countries all over the world are often surrounded by coastal defence systems (e.g. protective dunes and dykes) in order to protect coastal areas from threats of wave attack, storm surges and subsequent coastal floods. During moderate sea conditions, wave attack and coastal erosion is limited to nearshore areas and may only cause shore erosion. Under the same conditions, fresh groundwater, which is hydraulically interconnected with seawater, is in equilibrium with the laterally intruding seawaters. Such equilibrium prevails as long as the moderate sea level (MSL) and the hydrogeological conditions at the sea/land boundary are stationary. However, during extreme storm surges, the higher water levels may temporally threaten the coastal defence systems. In fact, shortwaves riding on the temporally rising sea level during storm surge events may directly runup, rundown and/or impact on barriers, possibly causing seaward erosion followed by lowering of barrier’s crest and hence wave overtopping or overflow through combined surge and waves. As a result, barriers may breach, inducing coastal inundation and subsequent vertical saltwater intrusion (VSWI) behind the breached barriers due to the vertical infiltration of inundating seawater into the fresh groundwater. In this study, a new integral physically based methodology is developed to reliably assess the possible implications of extreme storm surges on the safety of coastal barriers and the implications of possible breaching for contamination of coastal aquifers. The integral model is therefore capable to successively simulate breaching/overtopping of coastal barriers forced by storm surges as a hydraulic load, induced flood propagation in the hinterland and subsequent VSWI into coastal aquifers while considering the complexity of these processes and mutual interaction among them. The modelling methodology consists of an improved XBeach code (Roelvink et al., 2009) for hydro-morphodynamics unidirectionally coupled with the SEAWAT code (Langevin et al., 2008) for groundwater flow. The model is applied to a case study in northern Germany, showing that marine floods represent a serious threat to usability of coastal aquifers which are extremely important water resources. Outcomes of model application showed that a coastal flood event of a few hours may contaminate coastal aquifers for many decades, thus reducing the agricultural yield and hindering the sustainable development in coastal areas prone to coastal floods. This study represents, to the knowledge of the author, the first systematic research study that addresses the safety of natural coastal sandy barriers under extreme storm surge conditions together with the consequences of possible barrier breaching and overwash on subsequent flooding and saltwater intrusion into fresh groundwater. Moreover, it is probably the foremost study that attempts to mitigate storm-driven saltwater intrusion through the use and modelling of a subsurface drainage network. Besides improving the agricultural yield in coastal areas, the use of subsurface drainage network significantly reduces the natural remediation interval required for aquifers recovery after a coastal flood event. Moreover, it limits the vertical extent of the salt intrusion. The multiple flow domains and aspects discussed in this research make it a multi-disciplinary study that is quite relevant for the coastal engineering community, for flood risk managers, for coastal hydrologists, for groundwater suppliers as well as for sustainable development planners.


Sign in / Sign up

Export Citation Format

Share Document