scholarly journals A Wavelet-based Energetic Approach for the Analysis of Electroencephalogram

Author(s):  
Abul Hasan Siddiqi ◽  
Hulya Kodal Sevindir

Electroencephalography (EEG) is the recording of electrical activity along the scalp produced by the firing of neurons within the brain. The main application of EEG is in the case of epilepsy, as epileptic activity can create clear abnormalities on a standard EEG study. EEG signals, like many biomedical signals, are highly non-stationary by their nature. Wavelet analysis has found a prominent position in the investigation of biomedical signals for its ability to analyze such signals, in particular EEG signals. Wavelet transform is capable of separating the signal energy among different frequency bands (i.e., different scales), achieving a good compromise between temporal and frequency resolution. The present study is an attempt at better understanding of the mechanism causing the epileptic disorder and accurate prediction of the occurrence of seizures. In the present paper we identify typical patterns of energy redistribution before and during a seizure using multi-resolution wavelet analysis.  


2010 ◽  
Vol 24 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Włodzimierz Klonowski ◽  
Pawel Stepien ◽  
Robert Stepien

Over 20 years ago, Watt and Hameroff (1987 ) suggested that consciousness may be described as a manifestation of deterministic chaos in the brain/mind. To analyze EEG-signal complexity, we used Higuchi’s fractal dimension in time domain and symbolic analysis methods. Our results of analysis of EEG-signals under anesthesia, during physiological sleep, and during epileptic seizures lead to a conclusion similar to that of Watt and Hameroff: Brain activity, measured by complexity of the EEG-signal, diminishes (becomes less chaotic) when consciousness is being “switched off”. So, consciousness may be described as a manifestation of deterministic chaos in the brain/mind.



Author(s):  
Selma Büyükgöze

Brain Computer Interface consists of hardware and software that convert brain signals into action. It changes the nerves, muscles, and movements they produce with electro-physiological signs. The BCI cannot read the brain and decipher the thought in general. The BCI can only identify and classify specific patterns of activity in ongoing brain signals associated with specific tasks or events. EEG is the most commonly used non-invasive BCI method as it can be obtained easily compared to other methods. In this study; It will be given how EEG signals are obtained from the scalp, with which waves these frequencies are named and in which brain states these waves occur. 10-20 electrode placement plan for EEG to be placed on the scalp will be shown.



Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3345
Author(s):  
Enrico Zero ◽  
Chiara Bersani ◽  
Roberto Sacile

Automatizing the identification of human brain stimuli during head movements could lead towards a significant step forward for human computer interaction (HCI), with important applications for severely impaired people and for robotics. In this paper, a neural network-based identification technique is presented to recognize, by EEG signals, the participant’s head yaw rotations when they are subjected to visual stimulus. The goal is to identify an input-output function between the brain electrical activity and the head movement triggered by switching on/off a light on the participant’s left/right hand side. This identification process is based on “Levenberg–Marquardt” backpropagation algorithm. The results obtained on ten participants, spanning more than two hours of experiments, show the ability of the proposed approach in identifying the brain electrical stimulus associate with head turning. A first analysis is computed to the EEG signals associated to each experiment for each participant. The accuracy of prediction is demonstrated by a significant correlation between training and test trials of the same file, which, in the best case, reaches value r = 0.98 with MSE = 0.02. In a second analysis, the input output function trained on the EEG signals of one participant is tested on the EEG signals by other participants. In this case, the low correlation coefficient values demonstrated that the classifier performances decreases when it is trained and tested on different subjects.



2021 ◽  
pp. 1-10
Author(s):  
Shahul Mujib Kamal ◽  
Norazryana Mat Dawi ◽  
Hamidreza Namazi

BACKGROUND: Walking like many other actions of a human is controlled by the brain through the nervous system. In fact, if a problem occurs in our brain, we cannot walk correctly. Therefore, the analysis of the coupling of brain activity and walking is very important especially in rehabilitation science. The complexity of movement paths is one of the factors that affect human walking. For instance, if we walk on a path that is more complex, our brain activity increases to adjust our movements. OBJECTIVE: This study for the first time analyzed the coupling of walking paths and brain reaction from the information point of view. METHODS: We analyzed the Shannon entropy for electroencephalography (EEG) signals versus the walking paths in order to relate their information contents. RESULTS: According to the results, walking on a path that contains more information causes more information in EEG signals. A strong correlation (p= 0.9999) was observed between the information contents of EEG signals and walking paths. Our method of analysis can also be used to investigate the relation among other physiological signals of a human and walking paths, which has great benefits in rehabilitation science.



2021 ◽  
pp. 1-11
Author(s):  
Najmeh Pakniyat ◽  
Mohammad Hossein Babini ◽  
Vladimir V. Kulish ◽  
Hamidreza Namazi

BACKGROUND: Analysis of the heart activity is one of the important areas of research in biomedical science and engineering. For this purpose, scientists analyze the activity of the heart in various conditions. Since the brain controls the heart’s activity, a relationship should exist among their activities. OBJECTIVE: In this research, for the first time the coupling between heart and brain activities was analyzed by information-based analysis. METHODS: Considering Shannon entropy as the indicator of the information of a system, we recorded electroencephalogram (EEG) and electrocardiogram (ECG) signals of 13 participants (7 M, 6 F, 18–22 years old) in different external stimulations (using pineapple, banana, vanilla, and lemon flavors as olfactory stimuli) and evaluated how the information of EEG signals and R-R time series (as heart rate variability (HRV)) are linked. RESULTS: The results indicate that the changes in the information of the R-R time series and EEG signals are strongly correlated (ρ=-0.9566). CONCLUSION: We conclude that heart and brain activities are related.



2007 ◽  
Vol 2007 ◽  
pp. 1-12 ◽  
Author(s):  
Gerolf Vanacker ◽  
José del R. Millán ◽  
Eileen Lew ◽  
Pierre W. Ferrez ◽  
Ferran Galán Moles ◽  
...  

Controlling a robotic device by using human brain signals is an interesting and challenging task. The device may be complicated to control and the nonstationary nature of the brain signals provides for a rather unstable input. With the use of intelligent processing algorithms adapted to the task at hand, however, the performance can be increased. This paper introduces a shared control system that helps the subject in driving an intelligent wheelchair with a noninvasive brain interface. The subject's steering intentions are estimated from electroencephalogram (EEG) signals and passed through to the shared control system before being sent to the wheelchair motors. Experimental results show a possibility for significant improvement in the overall driving performance when using the shared control system compared to driving without it. These results have been obtained with 2 healthy subjects during their first day of training with the brain-actuated wheelchair.



Author(s):  
Sheikh Md. Rabiul Islam ◽  
◽  
Md. Shakibul Islam ◽  

The electroencephalogram (EEG) is an electrophysiological monitoring strategy that records the spontaneous electrical movement of the brain coming about from ionic current inside the neurons of the brain. The importance of the EEG signal is mainly the diagnosis of different mental and brain neurodegenerative diseases and different abnormalities like seizure disorder, encephalopathy, dementia, memory problem, sleep disorder, stroke, etc. The EEG signal is very useful for someone in case of a coma to determine the level of brain activity. So, it is very important to study EEG generation and analysis. To reduce the complexity of understanding the pathophysiological mechanism of EEG signal generation and their changes, different simulation-based EEG modeling has been developed which are based on anatomical equivalent data. In this paper, Instead of a detailed model a neural mass model has been used to implement different simulation-based EEG models for EEG signal generation which refers to the simplified and straightforward method. This paper aims to introduce obtained EEG signals of own implementation of the Lopes da Silva model, Jansen-Rit model, and Wendling model in Simulink and to compare characteristic features with real EEG signals and better understanding the EEG abnormalities especially the seizure-like signal pattern.



2021 ◽  
Vol 11 (12) ◽  
pp. 1608
Author(s):  
Takehiro Uda ◽  
Noritsugu Kunihiro ◽  
Ryoko Umaba ◽  
Saya Koh ◽  
Toshiyuki Kawashima ◽  
...  

Corpus callosotomy (CC) is one of the options in epilepsy surgeries to palliate patient seizures, and is typically applied for drop attacks. The mechanisms of seizure palliation involve disrupting the propagation of epileptic activity to the contralateral side of the brain. This review article focuses on the surgical aspects of CC. As a variations of CC, anterior two-thirds, posterior one-third, and total callosotomy are described with intraoperative photographs. As less-invasive surgical variations, recent progress in endoscopic CC, and CC without craniotomy, is described. CC remains acceptable under the low prevalence of complications, and surgeons should make the maximum effort to minimize the complication rate.



Author(s):  
А.А. Грищенко ◽  
A.A. Grishchenko

Studying coupling between brain areas from its electromagnetic activity is one of the key approaches in epilepsy research now, since epileptic activity has been considered to be a result of pathological synchronization in the brain. Often, research is conducted on animal models, because this allows to perform intracranial measurement, and to get rid of interference caused by the skull and to receive signals from deeper regions of the brain such as thalamus or hippocampus. In this study, the intracranial recordings from the frontal and parietal areas of cortex are investigated with a nonlinear correlation coefficient and a mutual information function in a sliding time window. The coupling estimates obtained were subjected for statistical analysis for significance using surrogate data. The dynamics of connectivity between the frontal cortex and the parietal cortex was shown to vary from seizure to seizure and from animal to animal. Therefore, estimates of the significant change in connectivity associated with initiation of the absense seizure, found previously based on averaging over a large number of animals and a large number of seizures for an each animal, can be a result of contribution of a relatively small number of seizures (less than a half of considered), for which the changes are significant.



2020 ◽  
Vol 4 (3) ◽  
pp. 1730-1747
Author(s):  
Jade Barbosa Kill ◽  
Patrick Marques Ciarelli ◽  
Klaus Fabian Côco ◽  
Mariane Lima Souza


Sign in / Sign up

Export Citation Format

Share Document