scholarly journals Comparison between Experimental and 3D Finite Element Analysis of Reinforced and Partially Pre-Stressed Concrete Solid Beams Subjected to Combined Load of Bending, Torsion and Shear

2008 ◽  
Vol 5 (1) ◽  
pp. 79
Author(s):  
A. S. Alnuaimi

This paper presents a non-linear analysis of three reinforced and two partially prestressed concrete solid beams based on a 20 node isoparametric element using an in-house 3D finite element program. Anon linear elastic isotropic model, proposed by Kotsovos, was used to model concrete behaviour, while steel was modelled as an embedded element exhibiting elastic-perfectly plastic response. Allowance was made for shear retention and for tension stiffening in concrete after cracking. Only in a fixed direction, smeared cracking modelling was adopted. The beams dimensions were 300x300 mm cross section, 3800 mm length and were subjected to combined bending, torsion and shear. Experimental results were compared with the non-linear predictions. The comparison was judged by load displacement relationship, steel strain, angle of twist, failure load, crack pattern and mode of failure. Good agreement was observed between the predicted ultimate load and the experimentally measured loads. It was concluded that the present program can confidently be used to predict the behaviour and failure load of reinforced and partially prestressed concrete solid beams subjected to a combined load of bending, torsion and shear. 

2013 ◽  
Vol 351-352 ◽  
pp. 1034-1037
Author(s):  
Feng Ge Li ◽  
Yan Zhao

An experimental investigation on the dynamic characteristics of unbounded prestressed concrete simply support beams is presented. A total of 5 unbounded prestressed concrete simply support beams were constructed and tested. The influence of prestressing on natural vibration frequency of concrete beams is studied by applying prestress gradually. A model of variable stiffness is proposed to calculate the natural vibration frequency of unbounded prestressed concrete beams. The finite element program Sap2000 is used to calculate the frequency of unbounded prestressed concrete beams. The results show that the calculating results agree well with experimental ones.


2000 ◽  
Vol 28 (2) ◽  
pp. 163-173 ◽  
Author(s):  
V. Sajeev ◽  
L. Vijayaraghavan ◽  
U. R. K. Rao

The finite element analysis gives the stresses and deflections of the broach and workpiece while cutting and burnishing. This has been achieved by developing a suitable finite element program for solving linear and non-linear material behaviour problems. The broach has been considered to behave elastically. In case of burnishing, the stresses on the workpiece result in yielding, and hence, non-linear material behaviour is considered for the workpiece. The program has been further modified to compute residual stresses on the broached component. The movement of a single burnishing tooth through the workpiece is simulated in a step-by-step manner, leading to residual stresses on the broached surface. The burnishing tooth and corresponding portion of the workpiece are modelled using FEM. The effect of tool-work interference and the ratio of radial to axial force on the stresses and deflections while burnishing have been studied. The residual stresses left behind on the broached component have been analytically evaluated.


2014 ◽  
Vol 638-640 ◽  
pp. 115-119
Author(s):  
Qing Wen Liu ◽  
Fu Qiang Wu

On the basis of the joint model experiment, the non-linear performance of joints is analysed by using finite element program. The concrete stress distribution, stirrups stress and dangerous area of joints with spread-ended beams are discussed. Finite element analysis shows that effective prestressing tendons through the joint core region play a beneficial role in concrete and can improve the compressive strengths of concrete, and help to improve the shear strength of joints. Finally, according to experiments and theoretical analysis, the beginning of the haunched region is the dangerous area of joint. In order to avoid concrete tension failure when exerting prestress, the beginning of the haunched region must have enough transverse U-shaped bars to resist the prestressing tension.


2019 ◽  
Vol 26 (1) ◽  
pp. 41-50
Author(s):  
Bashar A. Mahmood ◽  
Khalaf I. Mohammad

This study investigates the effect of load eccentricity on the deep beams in terms of failure load and failure mode by using ANSYS nonlinear finite element program. Three RC deep beams with shear span to depth ratios, varying from 0.91 to 1.67 are modeled. The comparison between experimental and numerical result under central load shows approximately fully match between them to ensure that the model was represented correctly. The model has been used to investigate the behavior of RC deep beams under eccentric loads with various heights of beams. Under eccentric load there was significant reduction in failure load. With increasing height of the beams the failure load increased gradually with incremental increases in height, also there is a clear reduction in failure load due to eccentricity. But when the eccentricity of the load on the beams reaches 50 mm all beams of different heights possess the same failure load and all of them are failed due to concrete crushing at the beam compression face.


2014 ◽  
Vol 501-504 ◽  
pp. 731-735
Author(s):  
Li Zhang ◽  
Kang Li

This paper analyzes the influence degree of related design parameters of wire-mesh frame wallboard on deformation through finite element program, providing theoretical basis for the design and test of steel wire rack energy-saving wallboard.


Author(s):  
Makoto Tanabe ◽  
Hajime Wakui ◽  
Nobuyuki Matsumoto

Abstract A finite element formulation to solve the dynamic behavior of high-speed Shinkansen cars, rail, and bridge is given. A mechanical model to express the interaction between wheel and rail is described, in which the impact of the rail on the flange of wheel is also considered. The bridge is modeled by using various finite elements such as shell, beam, solid, spring, and mass. The equations of motions of bridge and Shinkansen cars are solved under the constitutive and constraint equations to express the interaction between rail and wheel. Numerical method based on a modal transformation to get the dynamic response effectively is discussed. A finite element program for the dynamic response analysis of Shinkansen cars, rail, and bridge at the high-speed running has been developed. Numerical examples are also demonstrated.


2011 ◽  
Vol 225-226 ◽  
pp. 823-826
Author(s):  
Yu Feng Zhang ◽  
Guo Fu Sun

As a part of virtual simulation of construction processes, this paper deals with the quantitative risk analysis for the construction phases of the CFST arch bridge. The main objectives of the study are to evaluate the risks by considering an ultimate limit state for the fracture of cable wires and to evaluate the risks for a limit state for the erection control during construction stages. Many researches have been evaluated the safety of constructed bridges, the uncertainties of construction phases have been ignored. This paper adopts the 3D finite element program ANSYS to establish the space model of CFST Arch Bridge, and to calculate the linear, the geometrical nonlinear and the double nonlinear buckling safety factors under the six different lode cases. Then the bridge’s risks are evaluated according to the results calculated which provide a reference for design of similar project.


1991 ◽  
Vol 226 ◽  
Author(s):  
Yi-Hsin Pao ◽  
Kuan-Luen Chen ◽  
An-Yu Kuo

AbstractA nonlinear and time dependent finite element analysis was performed on two surface mounted electronic devices subjected to thermal cycling. Constitutive equations accounting for both plasticity and creep for 37Pb/63Sn and 90Pb/10Sn solders were assumed and implemented in a finite element program ABAQUS with the aid of a user subroutine. The FE results of 37Pb/63Sn solder joints were in reasonably good agreement with the experimental data by Hall [19]. In the case of 9OPb/1OSn solder in a multilayered transistor stack, the FE results showed the existence of strong peel stress near the free edge of the joint, in addition to the anticipated shear stress. The effect of such peel stress on the crack initiation and growth as a result of thermal cycling was discussed, together with the singular behavior of both shear and peel stresses near the free edge.


2017 ◽  
Vol 24 (3) ◽  
pp. 415-422 ◽  
Author(s):  
Ke Chun Shen ◽  
Guang Pan ◽  
JiangFeng Lu

AbstractThe buckling and layer failure characteristics of composite laminated cylinders subjected to hydrostatic pressure were investigated through finite element analysis for underwater vehicle application. The Tsai-Wu failure criteria were used as the failure criteria for the buckling analysis. A sensitivity analysis was conducted to research the influence of the number of elements on the critical buckling pressure. ANSYS, a finite element program, successfully predicted the buckling pressure with 5.3–27.8% (linear) and 0.3–22.5% (nonlinear) deviation from experimental results. The analysis results showed that the cylinders can carry more pressure after a slight decrease in pressure and recovery of the supporting load. For layer failure analysis, it was found that the failure that occurred in the 0° layer was more serious than that in the 90° layer within the neighboring layers at the inner layers (nos. 1–7) and outer layers (nos. 8–24).


Sign in / Sign up

Export Citation Format

Share Document