scholarly journals Processing of porcelain stoneware tile using sugarcane bagasse ash waste

2015 ◽  
Vol 9 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Myrian Schettino ◽  
José Holanda

Large amounts of waste materials are discarded in the sugarcane industry. This work investigates the reuse of sugarcane bagasse ash waste as an alternative raw material for porcelain stoneware tile bodies, replacing natural quartz by up to 5 wt.%. The tile pieces were fired at 1230 ?C using a fast-firing cycle (< 60min). The technological properties of the fired tile pieces (e.g., linear shrinkage, water absorption, apparent density, and flexural strength) were determined. The sintering process was followed by SEM and XRD analyses. The results show that up to 2.5 wt.% sugarcane bagasse ash waste can be used as a partial replacement for quartz in porcelain stoneware tile (group BIa, ISO 13006 standard), providing excellent technical properties. Hence, its application in high-quality ceramic tile for use in civil construction as a low-cost, alternative raw material could be an ideal means of managing sugarcane bagasse ash waste.

Cerâmica ◽  
2013 ◽  
Vol 59 (351) ◽  
pp. 473-480 ◽  
Author(s):  
K. C. P. Faria ◽  
J. N. F. Holanda

The sugarcane industry generates huge amounts of sugarcane bagasse ashes (SCBA). This work investigates the incorporation of a SCBA waste as an alternative raw material into a clay body, replacing natural clay material by up to 20 wt.%. Clay ceramic pieces were produced by uniaxial pressing and fired at temperatures varying from 700 to 1100 ºC. The technological properties of the clay ceramic pieces (linear shrinkage, apparent density, water absorption, and tensile strength) as function of the firing temperature and waste addition are investigated. The phase evolution during firing was followed by X-ray diffraction. The results showed that the SCBA waste could be incorporated into red ceramics (bricks and roofing tiles) in partial replacement for natural clay material. These results confirm the feasibility of valorisation of SCBA waste to produce red ceramic. This use of SCBA can also contribute greatly to reducing the environmental problems of the sugarcane industry, and also save the sources of natural raw materials used in the ceramic industry.


Author(s):  
Safiki Ainomugisha ◽  
Bisaso Edwin ◽  
Bazairwe Annet

Concrete has been the world’s most consumed construction material, with over 10 billion tons of concrete annually. This is mainly due to its excellent mechanical and durability properties plus high mouldability. However, one of its major constituents; Ordinary Portland Cement is reported to be expensive and unaffordable by most low-income earners. Its production contributes about 5%–8% of global CO2 greenhouse emissions. This is most likely to increase exponentially with the demand of Ordinary Portland Cement estimated to rise by 200%, reaching 6000 million tons/year by 2050.  Therefore, different countries are aiming at finding alternative sustainable construction materials that are more affordable and offer greener options reducing reliance on non-renewable sources. Therefore, this study aimed at assessing the possibility of utilizing sugarcane bagasse ash from co-generation in sugar factories as supplementary material in concrete. Physical and chemical properties of this sugarcane bagasse ash were obtained plus physical and mechanical properties of fresh and hardened concrete made with partial replacement of Ordinary Portland Cement. Cost-benefit analysis of concrete was also assessed. The study was carried using 63 concrete cubes of size 150cm3 with water absorption studied as per BS 1881-122; slump test to BS 1881-102; and compressive strength and density of concrete according to BS 1881-116. The cement binder was replaced with sugarcane bagasse ash 0%, 5%, 10%, 15%, 20%, 25% and 30% by proportion of weight. Results showed the bulk density of sugarcane bagasse ash at 474.33kg/m3, the specific gravity of 1.81, and 65% of bagasse ash has a particle size of less than 0.28mm. Chemically, sugarcane bagasse ash contained SiO2, Fe2O3, and Al2O3 at 63.59%, 3.39%, and 5.66% respectively. A 10% replacement of cement gave optimum compressive strength of 26.17MPa. This 10% replacement demonstrated a cost saving of 5.65% compared with conventional concrete. 


2020 ◽  
pp. 0734242X2094537 ◽  
Author(s):  
Gopinath Athira ◽  
Abdulsalam Bahurudeen ◽  
Vijaya Sukumar Vishnu

As stated in the European Commission’s waste framework directive, the geographic proximity of wastes to the potential recovery/disposal site is of paramount importance in attaining an effective resource recycling paradigm. The global interest in achieving an end-of-waste scenario encourages the recovery of useful products/secondary raw materials from locally available waste materials. Sugarcane bagasse ash is an abundantly available waste (44,200 tonnes day–1) from sugar plants in India which has the potential to be used as a partial replacement to cement in ready-mix concrete plants. Although pozzolanic performance of sugarcane bagasse ash and its ability in reducing the carbon emissions associated with concrete production have been reported in earlier research studies, its use in concrete is hindered due to the lack of availability and accessibility data. In this study, the geographical distribution of sugar plants and the available quantity of sugarcane bagasse ash in India have been determined. In addition, a detailed network analysis using a geographic information system was conducted to quantify the geographic proximity of bagasse ash, fly ash and slag sources to ready-mix concrete plants. The study results indicate that for most of the ready-mix concrete plants in India, the probability of having a bagasse ash source in proximity is higher than the probability of encountering slag/fly ash sources.


Author(s):  
Sajjad Ali Mangi ◽  
N Jamaluddin ◽  
M H Wan Ibrahim ◽  
Abd Halid Abdullah ◽  
A S M Abdul Awal ◽  
...  

2016 ◽  
Vol 835 ◽  
pp. 378-385 ◽  
Author(s):  
Ibrahim Umar Salihi ◽  
Shamsul Rahman Mohamed Kutty ◽  
Mohamed Hasnain Isa ◽  
Usman Aminu Umar ◽  
Emmanuel Olisa

Industrial wastewater containing toxic pollutants such as heavy metals tends to contaminate the environment once it is release without proper treatment. Heavy metals are toxic to both human and other living organisms. It is necessary to treat industrial wastewater polluted with heavy metals prior to its discharge into the receiving environment. In this study, low cost adsorbent was generated from sugarcane bagasse through incineration. The prepared adsorbent “microwave incinerated sugarcane bagasse ash” (MISCBA) was used in removing copper and zinc from aqueous solution. Parameters of importance such as pH, contact time and adsorbent dosages are studied to investigate their effects on the adsorption of copper and zinc. Maximum adsorption was observed at pH 6.0, contact time of 180 minutes and adsorbent dosage of 10 g/L. Zinc removal follows Langmuir isotherm model with correlation coefficient of 0.9291. Copper adsorption follows both Langmuir and Freundlich isotherm model with correlation coefficient of 0.9181 and 0.9742, respectively. Removal capacities of 38.4 mg/g and 20.4 mg/g were obtained for copper and zinc, respectively. Application of MISCBA as low - cost adsorbent have shown significant outcome in removal of copper and zinc from aqueous solution.


2018 ◽  
Vol 765 ◽  
pp. 324-328
Author(s):  
Tiago Assunção Santos ◽  
José da Silva Andrade Neto ◽  
Vitor Souza Santos ◽  
Daniel Véras Ribeiro

Due to the concern with the environmental impacts caused by the gases emitted by the cement industry and by the inadequate disposal of wastes generated in the sugar-alcohol industry, such as sugarcane bagasse ash (SCBA), a search for the development of new technologies, which are less aggressive to the environment and that propose feasible alternatives, began in order to reuse these wastes properly. Among these alternatives is the reuse of SCBA as partial replacement to cement or as addition to cementitious matrices. In this way, the present research has the objective of analyzing the influence of SCBA obtained by the calcination of sugarcane bagasse (SCB), at 600°C, in the process of Portland cement hydration. Initially, the SCBA was characterized physically, chemically and mineralogically, and then cement pastes with 20% and 35% substitution contents were elaborated, besides the reference paste, which were analyzed through X-ray diffraction (XRD) and thermogravimetric (TG) techniques. The results obtained show that there is a consumption of portlandite as a consequence of the use of SCBA, evidencing the pozolanicity of these ashes. In the pastes with 35% substitution content, there was an intense consumption of the portlandite, indicating, in this proportion, the pozzolanic reaction was more intense.


2019 ◽  
Vol 8 (3) ◽  
pp. 1982-1988

Use of agro and industrial wastes in concrete production will cause sustainable concrete era and greener habitat. In this study an endeavor has been made to discover the propriety of Sugarcane Bagasse Ash (SCBA) and Granite Waste (GW) as partial replacement for traditional river sand. The percentage substitute is calculated based on the particle packing approach. The properties such as compressive, splitting tensile, flexural strengths and modulus of elasticity, water absorption, sorptivity and rapid chloride penetration test of the concrete with bagasse ash and granite waste as a partial replacement for river sand and to evaluate them with those of conventional concrete made with river sand fine aggregate are investigated. The test results show that the strength aspects of bagasse ash-granite waste concrete are higher than those of the conventional concrete. Moreover, they suggest that the bagasse ash-granite waste concrete has higher strength characteristics and remains in the lower permeability level shows improvement in overall durability of concrete than the conventional concrete.


2020 ◽  
Vol 4 (2) ◽  
pp. 109-117
Author(s):  
Warsito Warsito ◽  
Anita Rahmawati

ABSTRAKBeton merupakan suatu material yang secara umum menjadi kebutuhan masyarakat terhadap fasilitas infrastruktur konstruksi yang semakin meningkat seiring dengan perkembangan zaman, oleh sebab itu pemilihan beton sebagai bahan baku utama konstruksi bangunan sangatlah penting. Beberapa hal yang perlu ditinjau dalam pembuatan beton adalah harganya relatif murah, mudah diperoleh, memiliki kuat tekan tinggi serta mempunyai sifat tahan terhadap faktor kondisi lingkungan. Abu Ampas Tebu (AAT) adalah sisa hasil pembakaran dari ampas tebu. Ampas tebu sendiri merupakan hasil limbah buangan yang berlimpah dari proses pembuatan gula. Tujuan penelitian ini dimaksudkan untuk mengetahui kuat tekan beton yang menggunakan serat bambu dan abu ampas tebu sebagai pengganti agregat halus dengan variasi tertentu yang mencapai 40%. Penelitian ini menggunakan metode kuantitatif eksperimen dan teknik analisa data menggunakan regresi. Variabel yang digunakan dalam penelitian ini adalah variabel bebas yang berupa variasi penggantian sebagian agregat halus menggunakan abu ampas tebu dan serat bambu. Hasil penelitian ini adalah beton dengan perbandingan komposisi campuran yang didapat sebelumnya dan hasil mix design beton normal maut sedang yaitu dengan besar kuat tekan fc’ 14,5 Mpa (K175) sampai dengan fc’17,15 Mpa (K210,6) yang kemudian ditambah dengan bahan AAT sebagai bahan penambah semen dan serat Bambu.Kata Kunci: Abu Ampas Tebu, Beton, Serat Bambu, Agregat ABSTRACTConcrete is a material that generally supports the community's need for construction of infrastructure facilities which is increasing along with the times. Selection of concrete as the main raw material for building construction is very important. There are benefits in making concrete such as low cost, ease to obtain, high compressive strength and resistancy to environmental conditions. Bagasse Ash (AAT) is the residue from the burning of sugarcane bagasse. Sugarcane bagasse itself is an abundant waste product from the sugar making processes. The purpose of this study was to determine the compressive strength of concrete using bamboo fibers and the AAT as a substitute for fine aggregate with certain variations reaching up to 40% with a concrete enhancer chemical aggregate. This research used the American Concrete Institute design method with a value of 0.40 and 0.45 on the concrete age of 28 days. Results found that the samples made were hard concrete with a comparison of the composition of the mixture obtained previously. Results of a normal deadly concrete mix design comprised with a large compressive strength fc '14.5 Mpa (K175) to fc '17, 15 Mpa (K210,6) which was then added to the AAT as aggregates in the cement and Bamboo fiber.Keywords: Bagasse Ash, Concrete, Bamboo, Aggregate


Sign in / Sign up

Export Citation Format

Share Document