scholarly journals Sugarcane Bagasse as an Efficient Biosorbent for Methylene Blue Removal: Kinetics, Isotherms and Thermodynamics

Author(s):  
Thaisa Caroline Andrade Siqueira ◽  
Isabella Zanette da Silva ◽  
Andressa Jenifer Rubio ◽  
Rosângela Bergamasco ◽  
Francielli Gasparotto ◽  
...  

Adsorption in biomass has proven to be a cost-effective option for treatment of wastewater containing dyes and other pollutants, as it is a simple and low cost technique and does not require high initial investments. The present work aimed to study the adsorption of methylene blue dye (MB) using sugarcane bagasse (SCB). The biomass was characterized by scanning electron microscopy (SEM). Adsorption studies were conducted batchwise. Kinetics, adsorption isotherms, and thermodynamics were studied. The results showed that SCB presented a maximum adsorption capacity of 9.41 mg g−1 at 45 °C after 24 h of contact time. Adsorption kinetics data better fitted the pseudo-second order model, indicating a chemical process was involved. The Sips’s three-parameter isotherm model was better for adjusting the data obtained for the adsorption isotherms, indicating a heterogeneous adsorption process. The process showed to be endothermic, spontaneous, and feasible. Therefore, it was concluded that SCB presented as a potential biosorbent material for the treatment of MB-contaminated waters.

2013 ◽  
Vol 65 (1) ◽  
Author(s):  
Norzita Ngadi ◽  
Chin Chiek Ee ◽  
Nor Aida Yusoff

Dyes contain carcinogenic materials which can cause serious hazards to aquatic life and the users of water. Textile industry is the main source of dye wastewater which results in environmental pollution. Many studies have been conducted to investigate the use of low cost adsorbent as an alternative technique for the adsorption of dye. The objective of this study is to determine the potential of eggshell powder as an adsorbent for methylene blue removal and find out the best operating conditions for the color adsorption at laboratory scale. The adsorption of cationic methylene blue from aqueous solution onto the eggshell powder was carried out by varying the operating parameters which were contact time, pH, dosage of eggshell powder and temperature in order to study their effect in adsorption capacity of eggshell powder. The results obtained showed that the best operating condition for removal of methylene blue was at pH 10 (78.98 %) and temperature 50°C (47.37 %) by using 2 g of eggshell powder (57.03 %) with 30 minutes equilibrium time (41.36 %). The kinetic studies indicated that pseudo-second-order model best described the adsorption process.


Author(s):  
Juraj Michálek ◽  
Kseniya Domnina ◽  
Veronika Kvorková ◽  
Kristína Šefčovičová ◽  
Klaudia Mončeková ◽  
...  

Abstract The usage of the low-cost catalysts for methylene blue removal from wastewater was investigated. Heterogeneous Fenton-like process consists of the use of a hydrogen peroxide solution, and an iron-rich catalyst, red mud and black nickel mud were used for that purpose. The factors such as the catalyst dose and the hydrogen peroxide solution volume were monitored. The results of experiments showed that the degradation of methylene blue dye in Fenton-like oxidation process using selected catalysts can be described by a pseudo-second-order kinetic model. The highest dye removal efficiency (87.15 %) was achieved using the black nickel mud catalyst after 30 minutes of reaction.


2021 ◽  
Author(s):  
Asma Nasrullah ◽  
Amir Sada Khan ◽  
A. H. Bhat ◽  
Taghreed M. Fagieh ◽  
Ersaa M. Bakhsh ◽  
...  

Abstract This study examines mangosteen peels waste and alginate beads (MPAB) as an efficient, sustainable and low-cost adsorbent for removal of methylene blue (MB) cationic dye from aqueous solution in a batch adsorption system. Surface functional groups, surface morphology, surface properties, and thermal stability of MBAB were analyzed using various instrumental techniques such as FTIR, FESEM, BET and TGA techniques. MPAB adsorption efficiency for MB was investigated through variation of dosage (0.01- 0.08g), pH (2- 10), contact time (60- 1320 min), MB concentration (20- 100 mg/L) and temperature (298- 333K). MPAB showed maximum removal capacity of 373 mg/g at 25 oC in basic medium. Kinetic and isotherm studies showed that pseudo second order kinetic models and both Freundlich and Langmuir isotherms best fit the experimental data. The findings revealed that novel MPAB has the potential to be a cost-effective adsorbent for removal of textile dyes.


2018 ◽  
Vol 7 (3) ◽  
pp. 204-216
Author(s):  
Lamya Kadiri ◽  
Abdelkarim Ouass ◽  
Youness Essaadaoui ◽  
El Housseine Rifi ◽  
Ahmed Lebkiri

Coriandrum sativum seeds (CSS) were investigated as a new eco-friendly and economic biosorbent for the removal of methylene blue (MB) dye from synthetic solutions. First, the spectroscopic analyses were effectuated using FTIR and SEM to confirm the possibility of CSS to remove MB dye from aqueous solutions. The study of the influence of different parameters, such as contact time, CSS mass, solution pH, MB concentration, and temperature was realized and proved the rapid and efficient power adopted by CSS as a removal of the studied dye. Also, the regeneration study was effectuated for four cycles with excellent adsorption rates. The modeling studies revealed that the studied process obeys the pseudo-second-order model and Langmuir isotherm model. The adsorption amount was found to be 107.53 mg/g. Finally, the determination of thermodynamic parameters indicated the exothermic and spontaneous type of the removal process of MB onto CSS.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mohsina Ahmed ◽  
Abu Nasar

Background: Due to an abrupt increase in the contamination of freshwater systems by dye-containing wastewater, there is an urgent need to find robust and greener adsorbents for the elimination of dyes from the contaminated water. As the dyes not only change the appearance of water but are also a cause of many serious problems, which can be some time mutagenic and carcinogenic. Methods: This research paper is based on the use of adsorbent made from the peel of jackfruit (POJ). The adsorbent derived from agriculture waste was low cost and efficient for the elimination of methylene blue (MB) dye from aqueous media. Batch adsorption experiments were accompanied by varying the pH of the solution, contact time, POJ dosage, and initial MB concentration. Results: It was seen that adsorption of MB onto Jackfruit peel adsorbent follows pseudo-second-order (PSO) kinetics and Langmuir isotherm with maximum biosorption capacity (qm) of 232.55 mg/g. The thermodynamic study revealed that the adsorption was spontaneous, endothermic, and associated with the rise in entropy. Conclusion: In view of the low-cost and promising adsorption efficiency, the present investigation submits that that POJ is novel and economically feasible adsorbent for the removal of MB from aqueous solutions.


RSC Advances ◽  
2019 ◽  
Vol 9 (58) ◽  
pp. 34076-34085 ◽  
Author(s):  
Zengxiao Cai ◽  
Rechana Remadevi ◽  
Md Abdullah Al Faruque ◽  
Mohan Setty ◽  
Linpeng Fan ◽  
...  

Dye wastewater has caused severe environmental and health problems. In this work, we have fabricated a novel low-cost membrane with good methylene blue dye adsorption and antibacterial property from naturally sustainable lemongrass (Cymbopogon citratus).


2020 ◽  
Vol 81 (6) ◽  
pp. 1180-1190
Author(s):  
You Wang ◽  
Qifan Peng ◽  
Naseem Akhtar ◽  
Xiaonong Chen ◽  
Yaqin Huang

Abstract Microporous fish waste-based activated carbon material (MFC) was prepared, with a large surface area of 2,193.52 m²/g, a pore size of 2.67 nm and micropore and total pore volumes of 0.9168 cm³/g and 0.9975 cm³/g, respectively. Adsorption efficiency of MFC was investigated by removal of methylene blue dye from wastewater. The Langmuir model and pseudo-second-order kinetics adequately described the adsorption process. MFC exhibited a high adsorption capacity of 476.19 mg/g at 30 °C, and reached equilibrium within 1 h. MFC could be an efficient and low-cost adsorbent for cationic dye removal during wastewater treatment.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Nady A. Fathy ◽  
Ola I. El-Shafey ◽  
Laila B. Khalil

The effectiveness of alkali-acid modification in enhancement the adsorption capacity of rice straw (RS) for removing a basic dye was studied. The obtained adsorbents were characterized by slurry pH, pHPZC, iodine number, methylene blue number, FTIR, and SEM analyses. Adsorption of methylene blue (MB) was described by the Langmuir, Freundlich, Tempkin, and Redlich-Peterson isotherm models. Effects of contact time, initial concentration of MB dye, pH of solution, adsorbent dose, salt concentration of NaCl, and desorbing agents on the removal of MB were reported. Kinetic studies were analyzed using the pseudo-first-order, pseudo-second-order, and the intraparticle diffusion models and were found to follow closely the pseudo-second-order model. Equilibrium data were best represented by the Langmuir and Redlich-Peterson isotherms. The adsorption capacities were varied between 32.6 and 131.5 mg/g for untreated and treated RS samples with NaOH-1M citric acid (ARS-1C), respectively. Adsorption behavior of the ARS-1C sample was experimented in a binary mixture containing methylene blue (basic) and reactive blue 19 (acidic) dyes which showed its ability to remove MB higher than RB19. Overall, the results indicate that the alkali-acid treatment proved to be potential modification for producing effective low-cost adsorbents for the removal of the basic dyes from wastewater.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Giannin Mosoarca ◽  
Cosmin Vancea ◽  
Simona Popa ◽  
Marius Gheju ◽  
Sorina Boran

Abstract In this study, the potential of a new low-cost adsorbent, Syringa vulgaris leaves powder, for methylene blue adsorption from aqueous solution was investigated. The adsorbent surface was examined using SEM and FTIR techniques. The experiments were conducted, in batch system, to find out the effect of pH, contact time, adsorbent dose, initial dye concentration, temperature and ionic strength on dye adsorption. The process is best described by Langmuir isotherm and the pseudo second order kinetic model. Maximum adsorption capacity, 188.2 (mg g−1), is better than other similar adsorbent materials. Thermodynamic parameters revealed a spontaneous and endothermic process, suggesting a physisorption mechanism. A Taguchi orthogonal array (L27) experimental design was used to determine the optimum conditions for the removal of dye. Various desorbing agents were used to investigate the regeneration possibility of used adsorbent. Results suggest that the adsorbent material is very effective for removal of methylene blue from aqueous solutions.


2014 ◽  
Vol 775-776 ◽  
pp. 749-754
Author(s):  
Mirna Sales Loiola Rosa ◽  
Marcos Pereira Silva ◽  
Alan Icaro Morais ◽  
Maria Rita de Morais Chaves Santos ◽  
Edson Cavalcanti Silva Filho ◽  
...  

The disposal of textile waste in water bodies is exacerbating environmental problems, which led scientists to seek natural materials to develop more sustainable ways. Searching for low cost materials was used to remove the dye in two cellulosic sources (filter papers of different brands). The papers were characterized by XRD which confirmed crystallographic profile similar to cellulose. With the aim of optimizing the best conditions, various tests were performed, where the ideal time was 180 minutes for the paper 1 and 240 minutes for the second paper, both by adjusting the pseudo second-order model. The other parameters studied was the pH, adsorbate-adsorbent systems which have maximum adsorption capacity of 2.76 mg / g at pH 2.02 and 2 mg / g at pH 11 for the paper 1 and 10.57 mg / g pH 4 and 2 mg / g at pH 11 for the paper 2. Both adsorbents had the best fit to the Langmuir model in pHs 2 and 11 at the temperature of 298 K.


Sign in / Sign up

Export Citation Format

Share Document