scholarly journals Effect of badminton shoe sole on the lunge skill performance: in the viewpoint of coordination

2021 ◽  
Vol 21 (2) ◽  
pp. 119-126
Author(s):  
Guanchun LIU ◽  
Yuqi LI ◽  
Quting HUANG ◽  
Jin ZHOU ◽  
Wing-Kai LAM

Badminton lunge requires rapid coordination between the knee and ankle joints and it is accompanied by fast contact between the shoe’s sole and the floor. Phase angle analysis is a protocol with high resolution and relating to the coordination, but how the shoe’s sole would affect the lunge performance was not clear in terms of coordination. Thereby, the aim of this study was to applied phase angle analysis to insight the lunge process, then to disclose the effect of badminton shoe’s sole on the lunge skill performance. Eleven elite badminton players performed five left-forward maximum lunge trials with wearing Rounded Heel Shoe (RHS), Flattened Heel Shoe (FHS), and Standard Heel Shoes (SHS). The motion capturing system was used to measure the knee and ankle kinematics information. The Phase Angle (PA), continuous relative phase (CRP) and variability of continuous relative phase (VCRP) between the knee and ankle joints were then calculated for both forward lunge phase and recovery phase in each of the three shoes. Current findings indicated that players wearing RHS had certain advantages on better movement coordination than other shoes, as indicated by better PA and CRP. The findings of this study would be helpful to understand the coordination of badminton lunges and explain the synergy between the lower extremity ankle and knee joint to minimize the possibility of injury in badminton. Furthermore, the coordination between the knee and ankle joints was greatly affected by the structure of the shoe heel design.

Author(s):  
I. S. Fischer ◽  
R. N. Paul

Abstract The input-output displacement relations of two Cardan joints arranged in series on a driveline has been investigated in detail, including the effects of unequal joints angles, the phase angle between the two Cardan joints and also such manufacturing tolerance errors as non-rigth angle link lengths and offset joint axes. A combined Newton-Raphson and Davidson-Fletcher-Powell optimization algorithm using dual-number coordinate-transformation matrices was employed to perform the analysis. An experiment was conducted to validate the results of the analysis. The apparatus consisted of a double-Cardan-joint driveline whose rotations were measured by optical shaft encoders that were sampled by a computer data-acquisition system. The equipment was arranged so that the phase angle between the joints and the offset angles between the shafts at each of the two joints could be readily varied. The “relative phase angle”, the difference between the phase angle of the two joints and the angle between the planes defined by the input and intermediate and the intermediate and output shafts, was found to be the significant factor. If the offset angles at both Cardan joints are equal, the double-Cardan-joint driveline function as a constant-velocity coupling when the magnitude of the relative phase angle is zero. If the offset angles at the two Cardan joints are unequal, a condition prevailing in the important front-wheel-drive automobile steering column, then fluctuation in output velocity for a constant input velocity is minimized although not eliminated for zero relative phase angle.


Measurement ◽  
2017 ◽  
Vol 110 ◽  
pp. 84-89 ◽  
Author(s):  
Kristina Daunoravičienė ◽  
Jurgita Žižienė ◽  
Jolanta Pauk ◽  
Adam Idzkowski ◽  
Inga Raudonytė ◽  
...  

2017 ◽  
Vol 313 (3) ◽  
pp. G265-G276 ◽  
Author(s):  
N. Paskaranandavadivel ◽  
L. K. Cheng ◽  
P. Du ◽  
J. M. Rogers ◽  
G. O’Grady

Slow waves play a central role in coordinating gastric motor activity. High-resolution mapping of extracellular potentials from the stomach provides spatiotemporal detail on normal and dysrhythmic slow-wave patterns. All mapping studies to date have focused exclusively on tissue activation; however, the recovery phase contains vital information on repolarization heterogeneity, the excitable gap, and refractory tail interactions but has not been investigated. Here, we report a method to identify the recovery phase in slow-wave mapping data. We first developed a mathematical model of unipolar extracellular potentials that result from slow-wave propagation. These simulations showed that tissue repolarization in such a signal is defined by the steepest upstroke beyond the activation phase (activation was defined by accepted convention as the steepest downstroke). Next, we mapped slow-wave propagation in anesthetized pigs by recording unipolar extracellular potentials from a high-resolution array of electrodes on the serosal surface. Following the simulation result, a wavelet transform technique was applied to detect repolarization in each signal by finding the maximum positive slope beyond activation. Activation-recovery (ARi) and recovery-activation (RAi) intervals were then computed. We hypothesized that these measurements of recovery profile would differ for slow waves recorded during normal and spatially dysrhythmic propagation. We found that the ARi of normal activity was greater than dysrhythmic activity (5.1 ± 0.8 vs. 3.8 ± 0.7 s; P < 0.05), whereas RAi was lower (9.7 ± 1.3 vs. 12.2 ± 2.5 s; P < 0.05). During normal propagation, RAi and ARi were linearly related with negative unit slope indicating entrainment of the entire mapped region. This relationship was weakened during dysrhythmia (slope: −0.96 ± 0.2 vs −0.71 ± 0.3; P < 0.05). NEW & NOTEWORTHY The theoretical basis of the extracellular gastric slow-wave recovery phase was defined using mathematical modeling. A novel technique utilizing the wavelet transform was developed and validated to detect the extracellular slow-wave recovery phase. In dysrhythmic wavefronts, the activation-to-recovery interval (ARi) was shorter and recovery-to-activation interval (RAi) was longer compared with normal wavefronts. During normal activation, RAi vs. ARi had a slope of −1, whereas the weakening of the slope indicated a dysrhythmic propagation.


2010 ◽  
Vol 43 (13) ◽  
pp. 2554-2560 ◽  
Author(s):  
Ross H. Miller ◽  
Ryan Chang ◽  
Jennifer L. Baird ◽  
Richard E.A. Van Emmerik ◽  
Joseph Hamill

Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. C27-C53 ◽  
Author(s):  
Zvi Koren ◽  
Igor Ravve

We consider a case where a 3D depth migration has been performed in the local angle domain (LAD) using rich-azimuth seismic data (e.g., conventional land surveys). The subsurface geologic model is characterized by considerable azimuthally anisotropic velocity variations. The background velocity field used for the migration can consist of azimuthally independent, e.g., vertical transverse isotropy, and/or azimuthally dependent (e.g., orthorhombic), velocity layers. The resulting 3D full-azimuth reflection angle gathers generated by the LAD migration represent in situ high-resolution amplitude preserved reflectivities associated with opening angles between incident and reflected slowness vectors in the specular directions. Residual moveouts (RMOs) automatically picked on these 3D image gathers along major horizons can indicate considerable residual periodic azimuthal variations. This situation is typical in depth imaging applied to unconventional shale plays, where the background velocity model doesn’t yet account for the aligned stress/fracture systems that exist in some of the target layers. We use the azimuthally dependent, phase-angle RMOs to update the interval parameters of the background model, accounting for the azimuthal anisotropy effect. Until now, this problem was mainly treated in the unmigrated time-offset domain, which is limited in describing the actual in situ changes of the velocity field with azimuths. The subsurface full-azimuth phase-angle domain RMOs provide better physical parameters to analyze the in situ azimuthal variations of the anisotropic media. Our method is grounded in a newly derived generalized Dix-based theory, where locally the background and updated models are assumed to be 1D anisotropic velocity models. At each lateral location, the orthorhombic axis [Formula: see text] points in the vertical direction across all layers, but the azimuthal orientations of the orthorhombic layers change from layer to layer. An effective model for such a layered structure (background or updated) is represented by a single layer with a vertical time identical to that of the whole package, effective fast and slow normal moveout (NMO) velocities, and an effective azimuthal orientation of the slow NMO velocity. Our approach begins with computation of these effective parameters for the background model and conversion of the high-resolution RMOs into a dense set of updated, effective, azimuthally dependent NMO velocities, which are then converted into three effective parameters of the updated model. Next, we apply a generalized Dix-based inversion approach to estimate the local NMO parameters for each updated layer. Finally, we convert the local parameters into interval azimuthally varying anisotropic model parameters (e.g., TTI, orthorhombic, or tilted orthorhombic) within each layer. The 1D Dix-based approach presented in this work should not be considered an alternative to more accurate 3D global inversion approaches, such as global anisotropic tomography. However, the proposed method can be effectively used for moderately laterally varying models, and some of the principal physical rules derived for the 1D model can be further used to improve the formulation and geophysical constraints applied to 3D global inversion methods.


Author(s):  
Jie Zhou ◽  
Xiaopeng Ning

Lumbopelvic coordination describes the relative contributions of lumbar and pelvis to the total trunk flexion/extension motion, which has been identified as a major influential factor to spinal loading. The current study investigated the differences in lumbopelvic coordination between trunk flexion and extension. Thirteen subjects performed pace-controlled trunk flexion/extension motions in the sagittal plane while lumbopelvic continuous relative phase and phase variability were quantified. The results demonstrated that compared with trunk extension, lumbopelvic continuous relative phase and phase variability were 28% and 117% greater in trunk flexion motion, respectively, which indicated a more anti-phase and unstable coordination pattern. Quantifying these coordination patterns helps identifying abnormal patterns and serves as normative benchmarks during low back pain rehabilitation.


2021 ◽  
Author(s):  
Kshitij I Girigoudar ◽  
Daniel K. Molzahn ◽  
Line A. Roald

Growing penetrations of distributed energy resources (DERs) increase the power injection variability in distribution systems, which can result in power quality issues such as voltage unbalance. To measure unbalance, organizations such as IEC, NEMA and IEEE define phase unbalance in their power quality standards. However, the definitions in these different standards are not consistent, and voltages that are considered acceptable by one standard may violate good practices defined by another standard. To address this issue, this paper provides analytical comparisons of the most common voltage unbalance definitions, which are supplemented with numerical simulations. The analytical relationships suggest that it is possible to approximately bound the symmetrical-component-based voltage unbalance factor (which depends on the magnitude and relative phase angle) by limiting the line-to-line voltage unbalance, whereas applying line-to-ground voltage unbalance definitions neglects all information about phase angle offsets.


Author(s):  
HYUK-JAE CHOI ◽  
GYOOSUK KIM ◽  
CHANG-YONG KO

In order to calculate the continuous relative phase (CRP) between joints, the portrait method based on the joint angle and angular velocity and the Hilbert transform method based on the analytical signal have been widely used. However, there are few comparisons of these methods. Therefore, the aim of this study is to quantitatively compare these methods by calculating the CRP in the lower-limb joints of the elderly during level free walking. Eighteen elderly female adults ([Formula: see text] year-old, [Formula: see text][Formula: see text]cm, [Formula: see text][Formula: see text]kg) wearing a Helen Hayes full-body marker set walked 10[Formula: see text]m on level ground at a self-selected velocity. The angles of the hip, knee, and ankle were measured. To calculate the CRP using the portrait method, the angular velocities were measured. Then, the phases between the angle and the angular velocity were calculated. To calculate the CRP using the Hilbert transform method, analytical signals were acquired. Then, the phases between the real and imaginary parts were calculated. A CRP was calculated as the difference between the phase in the proximal joint and the phase in the distal joint. To evaluate the similarity in the shape between the portrait and Hilbert transform methods, the cross-correlation was calculated. Bland–Altman plot analyses were performed to assess the agreement between these methods. For the root mean squares (RMSs) and standard deviations (SDs), a paired [Formula: see text]-test and the Pearson correlation between methods were evaluated. There were similarities in the in-phase or out-of-phase features and in the RMS and SD between the methods. Additionally, a higher cross-correlation and agreement between them were found. These results indicated the similarity between the portrait and Hilbert transform methods for the calculation of the CRP. Therefore, either method can be used to evaluate joint coordination.


Author(s):  
Andre´ Laneville ◽  
Pierre-Olivier Dallaire

This article deals with an experimental determination of the relative phase angle between the shedding of vortices and motion in the case of the Aeolian vibrations of a flexible circular tube. The objective is to compare and determine if the phase value of a transient regime differs from that measured in a steady vibrating state. For each mode of vortex shedding (Von Ka´rma´n, 2S and 2P), the results show that the value of the phase angle in the unsteady and steady regimes is relatively similar if an appropriate dependency is selected: in the cases of the 2P and 2S modes of vortex shedding, this dependency is either the dimensionless amplitude or the ratio of the velocity of the structure motion to the oncoming flow velocity; in the case of the Von Ka´rma´n regime, at the onset of the instability, the usual reduced velocity is a better dependent variable. The analysis of jumps occurring in the instruments output reveals a boundary between the Von Ka´rma´n and the 2P modes of vortex shedding.


Sign in / Sign up

Export Citation Format

Share Document