scholarly journals Population distribution characteristics and its relationship with natural factors in karst mountainous areas of Northwest Guangxi

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Shana Shi ◽  
Bingkang Xie ◽  
Baoqing Hu ◽  
Chuanyong Tang ◽  
Yan Yan ◽  
...  

The smallest administrative unit of the sixth national census-township (town) is selected as the basic unit, the population spatial distribution characteristics at the township (town) level in karst mountainous areas of northwest Guangxi are analyzed by using Lorenz curve and spatial correlation analysis method, and the influence intensity of natural factors on regional population spatial distribution is detected by using geographic detector method. The results show that: 1. the spatial distribution of population at the township (town) level has the characteristics of imbalance, showing generally significant positive correlation and certain aggregation; 2. there are significant differences in the impact of the spatial distribution of various natural factors on the population distribution. For the towns without karst distribution in the northwest and central south of the study area, the population density increases with the increase of factors conducive to human residence, but the average population density is only 79 people / km2. In the towns with karst distribution in the East and south, the spatial distribution of population density and natural factors is not a simple increase or decrease relationship, but fluctuates with the change of karst distribution area. 3. The factor detection results of the geographic detector show that the altitude has the greatest impact on the spatial distribution of population. The interactive detection results show that the impact intensity of any two natural factors after superposition and interaction presents nonlinear enhancement and two factor enhancement. It can be seen that the karst mountain area in northwest Guangxi is similar to other areas. Altitude is one of the main factors affecting the spatial distribution of population, but the river network density and unique geological landform of karst mountain area have a strong catalytic effect on the spatial distribution of population. The superposition and interaction with other factors can further strengthen the impact on population distribution.

2020 ◽  
Vol 9 (11) ◽  
pp. 637
Author(s):  
Ruxia Chen ◽  
Huimin Yan ◽  
Fang Liu ◽  
Wenpeng Du ◽  
Yanzhao Yang

Spatial data of regional populations are indispensable in studying the impact of human activities on resource utilization and the ecological environment. Because the differences between datasets and their spatial distribution are still unclear, this has become a puzzle in data selection and application. This study is based on four mainstream spatialized population datasets: the History Database of the Global Environment version 3.2.000 (HYDE), Gridded Population of the World version 4 (GPWv4), Global Human Settlement Layer (GHSL), and WorldPop. In view of possible influences of geographical factors, this study analyzes the differences in accuracy of population estimation by computing relative errors and population spatial distribution consistency in different regions by comparing datasets pixel by pixel. The results demonstrate the following: (1) Source data, spatialization methods, and case area features affect the precision of datasets. As the main data source is statistical data and the spatialization method maintains the population in the administrative region, the populations of GPWv4 and GHSL are closest to the statistical data value. (2) The application of remote sensing, mobile communication, and other geospatial data makes the datasets more accurate in the United Kingdom, with rich information, and the absolute value of relative errors is less than 4%. In the Tibet Autonomous Region of China, where data are hard to obtain, the four datasets have larger relative errors. However, the area where the four datasets are completely consistent is as high as 84.73% in Tibet, while in the UK it is only 66.76%. (3) The areas where the spatial patterns of the four datasets are completely consistent are mainly distributed in areas with low population density, or with developed urbanization and concentrated population distribution. Areas where the datasets have poor consistency are mainly distributed in medium population density areas with high urbanization levels. Therefore, in such areas, a more careful assessment should be made during the data application process, and more emphasis should be placed on improving data accuracy when using spatialization methods.


2020 ◽  
Vol 15 (2) ◽  
Author(s):  
Yinan Zhou ◽  
Qin Zhong Zhu ◽  
Li Luo

We examined the feasibility of estimating the spatial distribution of urban populations based on first-aid calls based on one high-density place, the Shanghai urban area and one low-density place, the Nanhai District of Foshan City in Guangdong Province. We aggregated the population and the total number of first-aid calls on digital maps divided by grids based on a Geographic Information System (GIS). Geographically weighted regression was applied to test the correlation between the population distribution simulated by first-aid call data and the actual residency. The impact of different population densities, different grid cell sizes and different types of first-aid calls on simulation correlation were tested. We found that the use of first-aid call data could explain 60-95% of the actual population distribution in Shanghai using a grid with 1000*1000 m cell size, while the Nanhai experience was that first-aid calls could only explain 4-76% of the actual population distribution using a grid with 2000*2000 m cell size. Thus, the higher the population density, the better the simulation effect. For a high-population density area, the overall accuracy of simulation can reach as high as 0.878 at the 1-km2 resolution. However, there are different kinds of first-aid calls and for the best estimation of the population distribution in densely populated areas, we suggest using first-aid calls from people requiring acute medical care rather than all first-aid call data.


2021 ◽  
Vol 13 (2) ◽  
pp. 284
Author(s):  
Dan Lu ◽  
Yahui Wang ◽  
Qingyuan Yang ◽  
Kangchuan Su ◽  
Haozhe Zhang ◽  
...  

The sustained growth of non-farm wages has led to large-scale migration of rural population to cities in China, especially in mountainous areas. It is of great significance to study the spatial and temporal pattern of population migration mentioned above for guiding population spatial optimization and the effective supply of public services in the mountainous areas. Here, we determined the spatiotemporal evolution of population in the Chongqing municipality of China from 2000–2018 by employing multi-period spatial distribution data, including nighttime light (NTL) data from the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) and the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS). There was a power function relationship between the two datasets at the pixel scale, with a mean relative error of NTL integration of 8.19%, 4.78% less than achieved by a previous study at the provincial scale. The spatial simulations of population distribution achieved a mean relative error of 26.98%, improved the simulation accuracy for mountainous population by nearly 20% and confirmed the feasibility of this method in Chongqing. During the study period, the spatial distribution of Chongqing’s population has increased in the west and decreased in the east, while also increased in low-altitude areas and decreased in medium-high altitude areas. Population agglomeration was common in all of districts and counties and the population density of central urban areas and its surrounding areas significantly increased, while that of non-urban areas such as northeast Chongqing significantly decreased.


2016 ◽  
Vol 8 (1) ◽  
pp. 67-83 ◽  
Author(s):  
Mimi Stith ◽  
Alessandra Giannini ◽  
John del Corral ◽  
Susana Adamo ◽  
Alex de Sherbinin

Abstract A spatial analysis is presented that aims to synthesize the evidence for climate and social dimensions of the “regreening” of the Sahel. Using an independently constructed archival database of donor-funded interventions in Burkina Faso, Mali, Niger, and Senegal in response to the persistence of drought in the 1970s and 1980s, the spatial distribution of these interventions is examined in relation to population density and to trends in precipitation and in greenness. Three categories of environmental change are classified: 1) regions at the northern grassland/shrubland edge of the Sahel where NDVI varies interannually with precipitation, 2) densely populated cropland regions of the Sahel where significant trends in precipitation and NDVI decouple at interannual time scales, and 3) regions at the southern savanna edge of the Sahel where NDVI variation is independent of precipitation. Examination of the spatial distribution of environmental change, number of development projects, and population density brings to the fore the second category, covering the cropland areas where population density and regreening are higher than average. While few, regions in this category coincide with emerging hotspots of regreening in northern Burkina Faso and southern central Niger known from case study literature. In examining the impact of efforts to rejuvenate the Sahelian environment and livelihoods in the aftermath of the droughts of the 1970s and 1980s against the backdrop of a varying and uncertain climate, the transition from desertification to regreening discourses is framed in the context of adaptation to climate change.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1498 ◽  
Author(s):  
Taraprasad Bhowmick ◽  
Yong Wang ◽  
Michele Iovieno ◽  
Gholamhossein Bagheri ◽  
Eberhard Bodenschatz

The physics of heat and mass transfer from an object in its wake has significant importance in natural phenomena as well as across many engineering applications. Here, we report numerical results on the population density of the spatial distribution of fluid velocity, pressure, scalar concentration, and scalar fluxes of a wake flow past a sphere in the steady wake regime (Reynolds number 25 to 285). Our findings show that the spatial population distributions of the fluid and the transported scalar quantities in the wake follow a Cauchy-Lorentz or Lorentzian trend, indicating a variation in its sample number density inversely proportional to the squared of its magnitude. We observe this universal form of population distribution both in the symmetric wake regime and in the more complex three dimensional wake structure of the steady oblique regime with Reynolds number larger than 225. The population density distribution identifies the increase in dimensionless kinetic energy and scalar fluxes with the increase in Reynolds number, whereas the dimensionless scalar population density shows negligible variation with the Reynolds number. Descriptive statistics in the form of population density distribution of the spatial distribution of the fluid velocity and the transported scalar quantities is important for understanding the transport and local reaction processes in specific regions of the wake, which can be used e.g., for understanding the microphysics of cloud droplets and aerosol interactions, or in the technical flows where droplets interact physically or chemically with the environment.


2017 ◽  
Vol 33 (2) ◽  
Author(s):  
Graziela Ribeiro da Cunha ◽  
Camila Marinelli Martins ◽  
Marília de Fátima Ceccon-Valente ◽  
Liana Ludielli da Silva ◽  
Flavia Dias Martins ◽  
...  

Abstract: This study aimed to establish the frequency and spatial distribution of animal and object hoarding in Curitiba (Paraná State), the eighth most populous city in Brazil. All hoarding complaints received by the City Secretaries of Health, Environment and Social Assistance between September 2013 and April 2015 were collected (n = 226) and suspicious cases were individually investigated. A total of 113/226 (50%) of complaints were confirmed as hoarding cases, representing an overall ratio of 6.45 cases per 100,000 inhabitants in Curitiba, of which 48/113 (42.5%) involved object hoarders, 41/113 (36.3%) animal hoarders and 24/113 (21.2%) both animal and object hoarders. A correlation of total identified cases with neighborhood population density and all population stratums analyzed (total, gender, age) was significantly positive (p < 0.01), and with neighborhood mean monthly income (r = -0.2; p = 0.03) significantly negative. A spatial cluster of cases was found in the north of the city (OR = 8.57; p < 0.01). Hoarding cases were relatively frequent in Curitiba and were associated with population distribution patterns and inversely related to neighborhood income.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5032 ◽  
Author(s):  
Qiang Zhou ◽  
Yuanmao Zheng ◽  
Jinyuan Shao ◽  
Yinglun Lin ◽  
Haowei Wang

Previously published studies on population distribution were based on the provincial level, while the number of urban-level studies is more limited. In addition, the rough spatial resolution of traditional nighttime light (NTL) data has limited their fine application in current small-scale population distribution research. For the purpose of studying the spatial distribution of populations at the urban scale, we proposed a new index (i.e., the road network adjusted human settlement index, RNAHSI) by integrating Luojia 1-01 (LJ 1-01) NTL data, the enhanced vegetation index (EVI), and road network density (RND) data based on population density relationships to depict the spatial distribution of urban human settlements. The RNAHSI updated the high-resolution NTL data and combined the RND data on the basis of human settlement index (HSI) data to refine the spatial pattern of urban population distribution. The results indicated that the mean relative error (MRE) between the population estimation data based on the RNAHSI and the demographic data was 34.80%, which was lower than that in the HSI and WorldPop dataset. This index is suitable primarily for the study of urban population distribution, as the RNAHSI can clearly highlight human activities in areas with dense urban road networks and can refine the spatial heterogeneity of impervious areas. In addition, we also drew a population density map of the city of Shenzhen with a 100 m spatial resolution for 2018 based on the RNAHSI, which has great reference significance for urban management and urban resource allocation.


Sign in / Sign up

Export Citation Format

Share Document