scholarly journals A REVIEW ON A HYBRID APPROACH USING MOBILE SINK AND FUZZY LOGIC FOR REGION BASED CLUSTERING IN WSN

2017 ◽  
Vol 16 (2) ◽  
pp. 7586-7590
Author(s):  
Amneet Kaur ◽  
Harpreet Kaur

A Wireless Sensor Network or WSN is supposed to be made up of a large number of sensors and at least one base station. The sensors are autonomous small devices with several constraints like the battery power, computation capacity, communication range and memory. They also are supplied with transceivers to gather information from its environment and pass it on up to a certain base station, where the measured parameters can be stored and available for the end user. In most cases, the sensors forming these networks are deployed randomly and left unattended to and are expected to perform their mission properly and efficiently. As a result of this random deployment, the WSN has usually varying degrees of node density along its area. Sensor networks are also energy constrained since the individual sensors, which the network is formed with, are extremely energy-constrained as well. Wireless sensor networks have become increasingly popular due to their wide range of application. Clustering sensor nodes organizing them hierarchically have proven to be an effective method to provide better data aggregation and scalability for the sensor network while conserving limited energy. Minimizing the energy consumption of a wireless sensor network application is crucial for effective realization of the intended application in terms of cost, lifetime, and functionality. However, the minimizing task is hardly possible as no overall energy cost function is available for optimization.

Author(s):  
Saloni Dhiman ◽  
Deepti Kakkar ◽  
Gurjot Kaur

Wireless sensor networks (WSNs) consist of several sensor nodes (SNs) that are powered by battery, so their lifetime is limited, which ultimately affects the lifespan and hence performance of the overall networks. Till now many techniques have been developed to solve this problem of WSN. Clustering is among the effective technique used for increasing the network lifespan. In this chapter, analysis of multi-hop routing protocol based on grid clustering with different selection criteria is presented. For analysis, the network is divided into equal-sized grids where each grid corresponds to a cluster and is assigned with a grid head (GH) responsible for collecting data from each SN belonging to respective grid and transferring it to the base station (BS) using multi-hop routing. The performance of the network has been analyzed for different position of BS, different number of grids, and different number of SNs.


21st century is considered as the era of communication, and Wireless Sensor Networks (WSN) have assumed an extremely essential job in the correspondence period. A wireless sensor network is defined as a homogeneous or heterogeneous system contains a large number of sensors, namely called nodes used to monitor different environments in cooperatives. WSN is composed of sensor nodes (S.N.), base stations (B.S.), and cluster head (C.H.). The popularity of wireless sensor networks has been increased day by day exponentially because of its wide scope of utilizations. The applications of wireless sensor networks are air traffic control, healthcare systems, home services, military services, industrial & building automation, network communications, VAN, etc. Thus the wide range of applications attracts attackers. To secure from different types of attacks, mainly intruder, intrusion detection based on dynamic state context and hierarchical trust in WSNs (IDSHT) is proposed. The trust evaluation is carried out in hierarchical way. The trust of sensor nodes is evaluated by cluster head (C.H.), whereas the trust of the cluster head is evaluated by a neighbor cluster head or base station. Hence the content trust, honest trust, and interactive trust are put forward by combining direct evaluation and feedback based evaluation in the fixed hop range. In this way, the complexity of trust management is carried in a hierarchical manner, and trust evaluation overhead is minimized.


Author(s):  
Gaurav Kumar Nigam ◽  
Chetna Dabas

Background & Objective: Wireless sensor networks are made up of huge amount of less powered small sensor nodes that can audit the surroundings, collect meaningful data, and send it base station. Various energy management plans that pursue to lengthen the endurance of overall network has been proposed over the years, but energy conservation remains the major challenge as the sensor nodes have finite battery and low computational capabilities. Cluster based routing is the most fitting system to help for burden adjusting, adaptation to internal failure, and solid correspondence to draw out execution parameters of wireless sensor network. Low energy adaptive clustering hierarchy is an efficient clustering based hierarchical protocol that is used to enhance the lifetime of sensor nodes in wireless sensor network. It has some basic flaws that need to be overwhelmed in order to reduce the energy utilization and inflating the nodes lifetime. Methods : In this paper, an effective auxiliary cluster head selection is used to propose a new enhanced GC-LEACH algorithm in order to minimize the energy utilization and prolonged the lifespan of wireless sensor network. Results & Conclusion: Simulation is performed in NS-2 and the outcomes show that the GC-LEACH outperforms conventional LEACH and its existing versions in the context of frequent cluster head rotation in various rounds, number of data packets collected at base station, as well as reduces the energy consumption 14% - 19% and prolongs the system lifetime 8% - 15%.


2021 ◽  
Vol 13 (0203) ◽  
pp. 124-128
Author(s):  
Suneela Kallakunta ◽  
Alluri Sreenivas

Wireless sensor networks (WSNs) are a new kind of wireless networks that are becoming very popular with a large number of civilian and military applications. A wireless sensor network (WSN) is a wireless network that contains distributed independent sensor devices that are meant to monitor physical or environmental conditions. AWireless Sensor Network consists of a set of connected tiny sensor nodes, which communicate with each other we can also interchange information and data. These nodes obtain information on the environment such as temperature, pressure, or humidity and this information is stored in a base station. The latter sends the info to a wired network or activates an alarm or an action, depending on the type of data being monitored.


2020 ◽  
Vol 12 (1) ◽  
pp. 205-224
Author(s):  
Anshu Kumar Dwivedi DUBEY

Purpose ”“ In the recent scenario, there are various issues related to wireless sensor networks such as clustering, routing, packet loss, network strength. The core functionality of primarily wireless sensor networks is sensor nodes that are randomly scattered over a specific area. The sensor senses the data and sends it to the base station. Energy consumption is an important issue in wireless sensor networks. Clustering and cluster head selection is an important method used to extend the lifetime of wireless sensor networks. The main goal of this research article is to reduce energy consumption using a clustering process such as CH determination, cluster formation, and data dissemination.   Methodology/approach/design ”“ The simulation in this paper was finished utilizing MATLAB programming methodology and the proposed technique is contrasted with the LEACH and MOD-LEACH protocols.   Findings ”“ The simulation results of this research show that the energy consumption and dead node ratio are improved of wireless sensor networks as compared to the LEACH and MOD-LEACH algorithms.   Originality/value ”“ In the wireless sensor network there are various constraints energy is one of them. In order to solve this problem use CH selection algorithms to reduce energy consumption and consequently increase network lifetime.


In wireless sensor network, randomly deployed nodes are formed as a clusters of varying size for each area depending upon the numbers of users. This paper deals with the cluster based joint routing with mobile sink and with static sink in cognitive based wireless sensor network. The Joint Routing (JR) is designed to overcome the problems, due to data gatherings of the sensor nodes for any application. Channel resources usually may vary among the different routing methods based on the traffic characteristics and application they require, which poses a great challenge to guarantee time delivery services. These problems poses a great challenge for cognitive radio based WSN. The resource allocation technique overcomes the problems like spatial priority, time delay, transmission delay and energy loss and here the channel resources are allocated with the help of TDMA technique. The static sink in networks consumes more energy which results the early die out of the nodes. Hence throughput of the networks declines which badly affect the network life time. To overcome these issues, static sink is replaced by mobile sink, which consumes less energy, before each transmission in a sensor networks. The networks with mobile sink provide us optimal solution and performance as well, while comparing with network with static sink. It is shown that the proposed system achieves 15% of improved throughput, 20% of less packet loss and 35% of less delay when compare with the system having centralized sink.


Author(s):  
Dr. Akhilesh A. Waoo ◽  
◽  
Mr. Virendra Tiwari ◽  

Wireless sensor networks (WSN’s) comprise limited energy small sensor nodes having the ability to monitor the physical conditions and communicate information among the various nodes without requiring any physical medium. Over the last few years, with the rapid advancements in information technology, there has been an increasing interest of various organizations in making the use of wireless sensor networks (WSN’s). The sensor nodes in WSN having limited energy detects an event, collect data and forward this collected data to the base node, called sink node, for further processing and assessment. Few attributes of WSN’s like the energy consumption and lifetime can be impacted by the design and placement of the Sink node. Despite various useful characteristics WSN’s is being considered vulnerable and unprotected. There is a large class of various security attacks that may affect the performance of the system among which sinkhole an adversary attack puts dreadful threats to the security of such networks. Out of various attacks, a sinkhole attack is one of the detrimental types of attacks that brings a compromised node or fabricated node in the network which keeps trying to lures network traffic by advertising its wrong and fake routing update. Sinkhole attacks may have some other serious harmful impacts to exploit the network by launching few other attacks. Some of these attacks are forwarding attacks, selective acknowledge spoofing attacks, and they may drop or modify routing information too. It can also be used to send fake or false information to the base station. This study is analyzing the challenges with sinkhole attacks and exploring the existing available solutions by surveying comparatively which used to detect and mitigate sinkhole attacks in the wireless sensor network.


Author(s):  
Dr. Akhilesh A. Waoo ◽  
◽  
Mr. Virendra Tiwari ◽  

Wireless sensor networks (WSN’s) comprise limited energy small sensor nodes having the ability to monitor the physical conditions and communicate information among the various nodes without requiring any physical medium. Over the last few years, with the rapid advancements in information technology, there has been an increasing interest of various organizations in making the use of wireless sensor networks (WSN’s). The sensor nodes in WSN having limited energy detects an event, collect data and forward this collected data to the base node, called sink node, for further processing and assessment. Few attributes of WSN’s like the energy consumption and lifetime can be impacted by the design and placement of the Sink node. Despite various useful characteristics WSN’s is being considered vulnerable and unprotected. There is a large class of various security attacks that may affect the performance of the system among which sinkhole an adversary attack puts dreadful threats to the security of such networks. Out of various attacks, a sinkhole attack is one of the detrimental types of attacks that brings a compromised node or fabricated node in the network which keeps trying to lures network traffic by advertising its wrong and fake routing update. Sinkhole attacks may have some other serious harmful impacts to exploit the network by launching few other attacks. Some of these attacks are forwarding attacks, selective acknowledge spoofing attacks, and they may drop or modify routing information too. It can also be used to send fake or false information to the base station. This study is analyzing the challenges with sinkhole attacks and exploring the existing available solutions by surveying comparatively which used to detect and mitigate sinkhole attacks in the wireless sensor network.


Author(s):  
Boselin Prabhu ◽  
Bala Kumar

Wireless sensor network (WSN) is a low-powered prestigious network fashioned by sensor nodes that treasures application in civilian, military, visual sense models and many others. Reduced energy utilization is an exigent task for these sensor networks. By the data aggregation procedure, needless communication between sensor nodes, cluster head and the base station is eluded. An evaluation of energy efficient optical low energy adaptive clustering hierarchy has been performed and the enactments have been compared with the prevailing low energy adaptive clustering hierarchy algorithm, between two detached wireless sensor network fields. The proposed clustering procedure has been primarily implemented to join two distinct wireless sensor fields. An optical fiber is used to join two reserved wireless sensor fields. This distributed clustering methodology chiefly targets in exploiting the parameters like network lifetime, throughput and energy efficiency of the whole wireless sensor system.


2018 ◽  
Vol 7 (2.4) ◽  
pp. 153
Author(s):  
Harkesh Sehrawat ◽  
Yudhvir Singh ◽  
Vikas Siwach

A Wireless Sensor Network (WSNs) is a collection of number of sensor nodes which are left open in an unsecured environment. Sensor nodes work and communicate together to attain the desired goals. They are placed at the locations where monitoring is otherwise impossible. Wireless Sensor Networks are resource constrained which may be computational power, memory capacity, battery power etc. As Wireless Sensor Networks are implemented in the unattended environment, they are prone to discrete type of security attacks. Because of their limitations these networks are easily targeted by intruders. Sinkhole attack is one of the security attacks which try to disturb the ongoing communication in wireless sensor network. In sinkhole attack, the intruder or the malicious node try to attract the network traffic towards itself, that sensor nodes will pass data packets through this compromised node thereby manipulating messages which sensor nodes are transferring to the base station. In this paper we analyze the impact of Sinkhole attack on AODV protocol under various conditions. We analyzed the impact of Sinkhole attack on AODV protocol with varying number of attacker nodes.  


Sign in / Sign up

Export Citation Format

Share Document