scholarly journals FUSARIUM HEAD BLIGHT AND MYCOTOXIN CONCENTRATIONS IN A MODERATELY RESISTANT WINTER WHEAT CULTIVAR UNDER DIFFERENT NUTRIENT REGIMES

2017 ◽  
Vol 7 (3) ◽  
pp. 1083-1095
Author(s):  
Malgorzata Glosek Sobieraj ◽  
Bozena Cwalina-Ambroziak ◽  
Agnieszka Waskiewicz ◽  
Adam Perczak ◽  
Arkadiusz Stepien

Winter wheat cv. Boomer was grown in a field-plot experiment in Tomaszkowo near Olsztyn. During the growing season, the severity of Fusarium head blight (FHB was evaluated on a 5-point scale. The quantitative and qualitative composition of Fusarium fungi colonizing wheat grain was evaluated in a laboratory. The content of Fusarium mycotoxins (deoxynivalenol, DON, nivalenol, NIV, zearalenone, ZEA, fumonisins FB1 and FB2) and ergosterol (ERG) in grain was determined by high-performance liquid chromatography (HPLC). The relationships between the severity of FHB and mycotoxin concentrations in grain were determined by calculating Pearson’s correlation coefficient r in the CORR SAS procedure. The effect of microelement fertilizers on the severity of FHB, the species composition of Fusarium fungi colonizing winter wheat grains and mycotoxin concentrations in grain were determined.Analyses of winter wheat spikes revealed that FHB was less severe in 2012 (healthy ears in the NPK+Mn treatment and the lowest value of the infection index 1% was noted in the absolute control treatment) than in 2013 (the most evident symptoms of FHB in the NPK+Nano-Gro treatment – infection index of approx. 12%). Mineral fertilization, i.e. NPK, NPK with microelements (Cu, Zn, Mn) and NPK with the Nano-Gro® organic growth stimulator, reduced the production of trichothecenes, ZEA and fumonisins B1 and B2 in both years of the study. The highest levels of DON and NIV were noted in winter wheat grain in 2012 in control, control/NPK, NPK+Cu and NPK+Mn treatments. Toxin-producing fungi: Fusarium culmorum, F. poae, Gibberella avenacea, G. zeae were isolated most frequently from winter wheat grain in the above treatments. The severity of FHB was not significantly correlated with the concentrations of ERG, FB1, FB2 and ZEA in grain. A negative correlation was observed between the severity of FHB vs. DON and NIV levels in grain.  

Author(s):  
Evgeniy Dimitrov ◽  
◽  
Zlatina Peycheva Uhr ◽  
Blagoy Andonov ◽  
Nikolaya Velcheva ◽  
...  

2020 ◽  
Vol 8 (4) ◽  
pp. 617
Author(s):  
Tim Birr ◽  
Mario Hasler ◽  
Joseph-Alexander Verreet ◽  
Holger Klink

Fusarium head blight (FHB) is one of the most important diseases of wheat, causing yield losses and mycotoxin contamination of harvested grain. A complex of different toxigenic Fusarium species is responsible for FHB and the composition and predominance of species within the FHB complex are determined by meteorological and agronomic factors. In this study, grain of three different susceptible winter wheat cultivars from seven locations in northern Germany were analysed within a five-year survey from 2013 to 2017 by quantifying DNA amounts of different species within the Fusarium community as well as deoxynivalenol (DON) and zearalenone (ZEA) concentrations. Several Fusarium species co-occur in wheat grain samples in all years and cultivars. F. graminearum was the most prevalent species, followed by F. culmorum, F. avenaceum and F. poae, while F. tricinctum and F. langsethiae played only a subordinate role in the FHB complex in terms of DNA amounts. In all cultivars, a comparable year-specific quantitative occurrence of the six detected species and mycotoxin concentrations were found, but with decreased DNA amounts and mycotoxin concentrations in the more tolerant cultivars, especially in years with higher disease pressure. In all years, similar percentages of DNA amounts of the six species to the total Fusarium DNA amount of all detected species were found between the three cultivars for each species, with F. graminearum being the most dominant species. Differences in DNA amounts and DON and ZEA concentrations between growing seasons depended mainly on moisture factors during flowering of wheat, while high precipitation and relative humidity were the crucial meteorological factors for infection of wheat grain by Fusarium. Highly positive correlations were found between the meteorological variables precipitation and relative humidity and DNA amounts of F. graminearum, DON and ZEA concentrations during flowering, whereas the corresponding correlations were much weaker several days before (heading) and after flowering (early and late milk stage).


2011 ◽  
Vol 64 (1) ◽  
pp. 123-130 ◽  
Author(s):  
Skaidre Suproniene ◽  
Audrone Mankeviciene ◽  
Irena Gaurilcikiene

The effects of fungicides on Fusarium spp. and their associated mycotoxins in naturally infected winter wheat grain Field trials conducted at the Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry (central part of Lithuania) in 2009 were aimed to evaluate the effect of fungicides on Fusarium Head Blight (FHB) in a naturally infected field. A single application of dimoxystrobin + epoxiconazole (Swing Gold), prothioconazole (Proline), metconazole (Juventus), tebuconazole (Folicur), prothioconazole + tebuconazole (Prosaro) was applied to winter wheat cv. ‘Zentos’ at the manufacturer's recommended doses at anthesis (BBCH 65). The FHB incidence and severity were assessed at milk and hard maturity stages. The percentage of Fusarium infected grain and deoxynivalenol (DON), zearalenone (ZEN) and T-2 toxin (T-2) concentrations in harvested grain were determined. In all fungicide treated plots a significant reduction of FHB incidence and severity was determined; however the fungicides did not exert any effect on the amount of Fusarium-infected grain as compared with the untreated control. A reduction of DON, ZEN and T-2 contents in grain was determined in tebuconazole treatments. Fusarium avenaceum (Fr.) Sacc, F. culmorum (W. G. Sm.) Sacc., F. poae (Peck) Wollenw, F. sporotrichioides Sherb. and F. tricinctum (Corda) Sacc were identified in wheat grain, F. poae was prevalent.


2005 ◽  
Vol 95 (10) ◽  
pp. 1225-1236 ◽  
Author(s):  
P. A. Paul ◽  
P. E. Lipps ◽  
L. V. Madden

The association between Fusarium head blight (FHB) intensity and deoxynivalenol (DON) accumulation in harvested grain is not fully understood. A quantitative review of research findings was performed to determine if there was a consistent and significant relationship between measures of Fusarium head blight intensity and DON in harvested wheat grain. Results from published and unpublished studies reporting correlations between DON and Fusarium head blight “index” (IND; field or plot-level disease severity), incidence (INC), diseased-head severity (DHS), and Fusarium-damaged kernels (FDK) were analyzed using meta-analysis to determine the overall magnitude, significance, and precision of these associations. A total of 163 studies was analyzed, with estimated correlation coefficients (r) between -0.58 and 0.99. More than 65% of all r values were >0.50, whereas less that 7% were <0. The overall mean correlation coefficients for all relationships between DON and disease intensity were significantly different from zero (P < 0.001). Based on the analysis of Fisher-transformed r values ( zr values), FDK had the strongest relationship with DON, with a mean r of 0.73, followed by IND (r = 0.62), DHS (r = 0.53), and INC (r = 0.52). The mean difference between pairs of transformed zr values (zd ) was significantly different from zero for all pairwise comparisons, except the comparison between INC and DHS. Transformed correlations were significantly affected by wheat type (spring versus winter wheat), study type (fungicide versus genotype trials), and study location (U.S. spring- and winter-wheat-growing regions, and other wheat-growing regions). The strongest correlations were observed in studies with spring wheat cultivars, in fungicide trials, and in studies conducted in U.S. spring-wheat-growing regions. There were minor effects of magnitude of disease intensity (and indirectly, environment) on the transformed correlations.


Plant Disease ◽  
2018 ◽  
Vol 102 (6) ◽  
pp. 1141-1147 ◽  
Author(s):  
Kaitlyn M. Bissonnette ◽  
Frederic L. Kolb ◽  
Keith A. Ames ◽  
Carl A. Bradley

Management of Fusarium graminearum-associated mycotoxins in wheat grain has been extensively evaluated, but little is known about management of mycotoxins in straw. Two research trials were conducted at four locations from 2011 to 2014. The objective of the first trial was to determine the efficacy of fungicides, and the objective of the second trial was to evaluate the use of integrated disease management strategies, for the control of Fusarium head blight (FHB) and reducing the concentration of the Fusarium mycotoxins deoxynivalenol, 3-acetyl-deoxynivalenol, and 15-acetyl-deoxynivalenol in straw. In the first trial, it was determined that demethylation inhibitor (DMI) fungicides did not offer significant (P ≤ 0.05) reductions of mycotoxin concentrations in the straw compared with a no-fungicide control treatment, but significant (P ≤ 0.05) reductions in mycotoxin concentration were observed in the control when compared with treatments with the application of quinone outside inhibitor (QoI)-containing fungicides. In the second trial, mycotoxin concentrations in the straw were significantly (P ≤ 0.05) reduced in the moderately resistant cultivar compared with the susceptible cultivar, but were not affected by the use of a fungicide. The practices typically used to manage Fusarium mycotoxins in wheat grain, especially the selection of resistant cultivars and not using a QoI fungicide, may be an effective means to reduce mycotoxin concentrations in the straw.


2008 ◽  
Vol 43 (No. 1) ◽  
pp. 16-31 ◽  
Author(s):  
V. Šíp ◽  
J. Chrpová ◽  
L. Leišová ◽  
S. Sýkorová ◽  
L. Kučera ◽  
...  

Reactions to artificial infection with <i>Fusarium culmorum</i> and (metconazole- or tebuconazole-based) fungicides were studied in nine winter wheat cultivars that were evaluated in field experiments at the location Prague-Ruzyne for four years (2001&minus;2004) for deoxynivalenol (DON) content in grain, pathogen DNA content (Ct) by real-time quantitative PCR, percentage of Fusarium damaged grains (FDG), symptom scores and reductions in grain yield components. All examined traits were highly affected by conditions of experimental years and interactions with cultivars and treatments. Moderately resistant cultivars Arina and Petrus were included in the first homogeneous group in all traits, including the pathogen DNA content. To predict cultivar resistance to Fusarium head blight and accumulation of DON, the examination of the percentage of FDG in different environments appeared to be useful from practical aspects. The pathogen DNA content was significantly related to the content of DON under different conditions, however, the correlation coefficients ranged between 0.42 and 0.92. Different levels of DON could be detected at similar pathogen contents. The higher colonization of grain by the fungus was mostly connected with a strongly reduced amount of DON per pathogen unit (DON/Ct ratio). The fungicide treatment had a significant effect on a reduction in all traits except DON/Ct, but the effects on different traits were not often proportional and they were highly variable in the particular years (range 10&minus;69%) and cultivars (range < 0&minus;60%). While the application of fungicide caused a reduction in DON content in all cultivars, an increase in pathogen content after the application of fungicides was not exceptional. The low fungicide effect on a reduction in pathogen content was connected with higher temperatures (temperature extremes) in a 30-day period of disease development. The efficacy of fungicide treatment for DON was low at high pathogen content and late heading. The use of the collected data to improve control measures is discussed.


2011 ◽  
Vol 42 (No. 4) ◽  
pp. 137-141 ◽  
Author(s):  
J. Chrpová ◽  
V. Šíp ◽  
E. Matějová ◽  
S. Sýkorová

Progression of deoxynivalenol (DON) concentrations in spikes and kernels was studied in relation to Fusarium head blight (FHB) symptoms in five winter wheat cultivars, differing in resistance to FHB, after single floret inoculation with an aggressive isolate of Fusarium culmorum. After inoculation in field conditions the spikes were detached from the plant and kept in the greenhouse under controlled conditions. High concentrations of DON were detected in susceptible cultivars at an early stage of pathogenesis (7 days after inoculation). Over the whole examined 21-day period and also at maturity spikes contained more DON than kernels. While differences between cultivars in the accumulation of DON were highly expressed already 7 days after inoculation, differences in symptomatic reactions were not clear until day 21. Owing to the reported crucial role of DON at early stages of pathogenesis, the importance of appropriate timing of fungicide application is highly stressed. &nbsp;


Sign in / Sign up

Export Citation Format

Share Document