scholarly journals Characterization of Thermally Evaporated CdSe1-XSX Thin Films for Solar Cells Applications

2018 ◽  
Vol 14 (2) ◽  
pp. 5477-5487 ◽  
Author(s):  
M. Abdel-Rahman

Binary semiconductor CdSe and CdS thin films are widely used for optoelectronic devices and window materials. The formation of ternary CdSe1-xSx thin films improves the physical characteristics of the binary CdSe thin films. The importance of CdSe1-xSx thin film is the change of band gap when incorporating S into the CdSe. This change in energy gap recommends CdSe1-xSx thin film for photovoltaic and photoconductive cells applications. In this work, polycrystalline CdSe1-xSx thin films have been grown in terms of thermal evaporation technique. X-ray diffractometry has been used to determine the lattice parameters and the crystallite size of the CdSe1-xSx mixed crystals. The variation in lattice parameters with composition from x = 0 to x = 1 were linearly. The crystallite size varies parabolically with the change in composition. The energy gap, opt g E , values of CdSe1-xSx thin films were estimated in terms of first derivative of absorbance with respect to wavelength and found to be increased with the formation of the ternary compound Cd-Se-S and with increasing the S content as expense of Se. This wider energy gap of the prepared films, which permits extra light to reach the solar cell junction, was correlated with the change in the microstructure parameters of thin films.

2019 ◽  
Vol 17 (43) ◽  
pp. 94-102
Author(s):  
Holya A. Alobaidy

Spin coating technique used to prepare ZnPc, CdS and ZnPc/CdS blend thin films, these films annealed at 423K for 1h, 2h and 3h. Optical behavior of these films were examined using UV-Vis. and PL. The absorption spectrum of ZnPc shows a decreasing in absorption with the increase of annealing time while CdS spectrum give a clearly absorption peak at~510 nm. Energy gap of ZnPc increases from 1.41 to 1.52 eV by increasing the annealing time. Eg of CdS decrease by increasing annealing time, from 2.3 eV to 2.2 eV. The intensities of the peaks obtained from PL spectra were strongly dependent on annealing time and confirmed the results obtained from UV-Vis. D.C. conductivity measurement showed that all the thin films have two different activation energies in the temperature range 303–473K.


2021 ◽  
Vol 886 ◽  
pp. 57-65
Author(s):  
Shaymaa Qasim Abdul Hasan ◽  
Ahmed Z. Obaid ◽  
Hanan K. Hassun ◽  
Auday H. Shaban

Thin film solar cells are preferable to the researchers and in applications due to the minimum material usage and to the rising of their efficiencies. In particular, thin film solar cells, which are designed based one transition metal chalcogenide materials, paly an essential role in solar energy conversion market. In this paper, transition metals with chalcogenide Nickel selenide termed as (NiSe2/Si) are synthesized. To this end, polycrystalline NiSe2 thin films are deposited through the use of vacuum evaporation technique under vacuum of 2.1x10-5 mbar, which are supplied to different annealing temperatures. The results show that under an annealed temperature of 525 K, the nickel sulfoselenide thin films are polycrystalline with an efficient regularity and best crystalline quality. In addition, the results demonstrate that the intersection argument for the optical properties under investigation provid the direct bandgap, over which the films have inferred on variety (1.55 and 1.75 eV). Overall, the results illustrate that an efficiency of 2.89% can be achieved with 525 K temperature.


2013 ◽  
Vol 743-744 ◽  
pp. 438-442
Author(s):  
Zhen Hai Xie ◽  
Jian Kang Li

Chemical bath deposition of CdS thin film for solar cells was investigated in this study. CdS thin films were prepared by chemical-bath deposition (CBD) from a bath containing cadmium acetate, ammonium chloride, ammonium hydroxide and thiourea in aqueous solution on the glass substrate at certain bath temperature. The characterization of samples was conducted by using different methods such as scanning electron microscopy (SEM), X-ray diffraction (XRD) and ultraviolet spectrophotometry (UV). The crystal quality of CdS thin films was improved after CdCl2 thermal annealing at 400C. The results showed that chemical bath deposited CdS thin film was symmetrical and compact, but depositing rate was low. As a result, the best deposition conditions were summarized, such as the pH value was about 10.5, depositing time was 60 minutes.


2011 ◽  
Vol 21 (4) ◽  
pp. 379
Author(s):  
Dang Tran Chien ◽  
Pham Duy Long ◽  
Pham Van Hoi

In this article we present the fabrication and characterization of the nanoporous ZnO and/or ZnO/CdS thin films onto indium doped-tin oxide (ITO) substrates, based on the thermal evaporation technique followed by thermal treatment. The preparation method was relatively simple and low-cost for large scale uniform coating to produce clean, dense and strong adhesion to substrate thin films. The nanostructured ZnO and ZnO/CdS thin films were characterized by X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM). The nanostructured ZnO/CdS bilayer film was used in a photo-electrochemical (PEC) cell as a working electrode and a Pt net as a counter electrode. The results show that the photovoltaic cell with nanostructured ZnO/CdS bilayer film electrode has significantly improved photoelectric capability in comparison with that of ZnO electrode.


Author(s):  
Sami Salmann Chiad

In this paper, the Fe2O3 thin film were prepared with various ratios doping of NiO by spray pyrolysis method on glass substrate temperature 400 °C. The initial solution was including a 0.1 M/L for both NiCl2 and FeCl3 diluted with redistilled water and a few drops of HCl. The effect of NiO-doping on optical properties were studied. UV-Visible spectrophotometer in the range of (300-900) nm used to determine absorbance spectra. The transmittance increased with increasing NiO content in NiO:Fe2O3 thin films, same behavior of extinction coefficient and skin depth. The energy gap increased from 2.45 eV before doping to 2.86 eV after 3% NiO-doping. While the reflectance, absorption coefficient, and refractive index are decreased with increasing NiO content in Fe2O3 thin films.


2011 ◽  
Vol 239-242 ◽  
pp. 891-894 ◽  
Author(s):  
Tsung Fu Chien ◽  
Jen Hwan Tsai ◽  
Kai Huang Chen ◽  
Chien Min Cheng ◽  
Chia Lin Wu

In this study, thin films of CaBi4Ti4O15with preferential crystal orientation were prepared by the chemical solution deposition (CSD) technique on a SiO2/Si substrate. The films consisted of a crystalline phase of bismuth-layer-structured dielectric. The as-deposited CaBi4Ti4O15thin films were crystallized in a conventional furnace annealing (RTA) under the temperature of 700 to 800°C for 1min. Structural and morphological characterization of the CBT thin films were investigated by X-ray diffraction (XRD) and field-emission scanning electron microscope (FE-SEM). The impedance analyzer HP4294A and HP4156C semiconductor parameters analyzer were used to measurement capacitance voltage (C-V) characteristics and leakage current density of electric field (J-E) characteristics by metal-ferroelectric-insulator- semiconductor (MFIS) structure. By the experimental result the CBT thin film in electrical field 20V, annealing temperature in 750°C the CBT thin film leaks the electric current is 1.88x10-7A/cm2and the memory window is 1.2V. In addition, we found the strongest (119) peak of as-deposited thin films as the annealed temperature of 750°C


2013 ◽  
Vol 665 ◽  
pp. 254-262 ◽  
Author(s):  
J.R. Rathod ◽  
Haresh S. Patel ◽  
K.D. Patel ◽  
V.M. Pathak

Group II-VI compounds have been investigated largely in last two decades due to their interesting optoelectronic properties. ZnTe, a member of this family, possesses a bandgap around 2.26eV. This material is now a day investigated in thin film form due to its potential towards various viable applications. In this paper, the authors report their investigations on the preparation of ZnTe thin films using vacuum evaporation technique and their structural and optical characterizations. The structural characterization, carried out using an X-ray diffraction (XRD) technique shows that ZnTe used in present case possesses a cubic structure. Using the same data, the micro strain and dislocation density were evaluated and found to be around 1.465×10-3lines-m2and 1.639×1015lines/m2respecctively. The optical characterization carried out in UV-VIS-NIR region reveals the fact that band gap of ZnTe is around 2.2eV in present case. In addition to this, it was observed that the value of bandgap decreases as the thickness of films increases. The direct transitions of the carries are involved in ZnTe. Using the data of UV-VIS-NIR spectroscopy, the transmission coefficient and extinction coefficient were also calculated for ZnTe thin films. Besides, the variation of extinction coefficient with wavelength has also been discussed here.


2019 ◽  
Vol 26 (5) ◽  
pp. 1600-1611 ◽  
Author(s):  
Gihan Kwon ◽  
Yeong-Ho Cho ◽  
Ki-Bum Kim ◽  
Jonathan D. Emery ◽  
In Soo Kim ◽  
...  

Porous, high-surface-area electrode architectures are described that allow structural characterization of interfacial amorphous thin films with high spatial resolution under device-relevant functional electrochemical conditions using high-energy X-ray (>50 keV) scattering and pair distribution function (PDF) analysis. Porous electrodes were fabricated from glass-capillary array membranes coated with conformal transparent conductive oxide layers, consisting of either a 40 nm–50 nm crystalline indium tin oxide or a 100 nm–150 nm-thick amorphous indium zinc oxide deposited by atomic layer deposition. These porous electrodes solve the problem of insufficient interaction volumes for catalyst thin films in two-dimensional working electrode designs and provide sufficiently low scattering backgrounds to enable high-resolution signal collection from interfacial thin-film catalysts. For example, PDF measurements were readily obtained with 0.2 Å spatial resolution for amorphous cobalt oxide films with thicknesses down to 60 nm when deposited on a porous electrode with 40 µm-diameter pores. This level of resolution resolves the cobaltate domain size and structure, the presence of defect sites assigned to the domain edges, and the changes in fine structure upon redox state change that are relevant to quantitative structure–function modeling. The results suggest the opportunity to leverage the porous, electrode architectures for PDF analysis of nanometre-scale surface-supported molecular catalysts. In addition, a compact 3D-printed electrochemical cell in a three-electrode configuration is described which is designed to allow for simultaneous X-ray transmission and electrolyte flow through the porous working electrode.


2020 ◽  
Vol 21 (1) ◽  
pp. 8
Author(s):  
Emy Mulyani ◽  
Tjipto Sujitno ◽  
Dessy Purbandari ◽  
Ferdiansjah Ferdiansjah ◽  
Sayono Sayono

This paper presents the research on the growth of ZnS:Ag:Cu thin film on a glass substrate as a radio-luminescent material. The SRIM/TRIM software is used to determine the optimum thickness based on an energy deposition depth of 5.485 MeV Am 241 alpha radiation source on ZnS:Ag:Cu material. To increase the adhesive strength of the coating, initially, the glass substrate is etched using a plasma glow discharged at 280°C for 15 minutes. Multiple coatings of ZnS:Ag:Cu were  etched on the glass substrate; this was carried out using a thermal evaporation technique to achieve the optimal thickness (based on SRIM/TRIM simulation). The thin film thickness was observed using a scanning electron microscope (SEM). The optical properties of the un-etched, etched glass substrate and thin-film were characterized using UV-Vis spectrometer. Based on SRIM/TRIM simulation, the optimal thickness is 22 mm which can be achieved by coating three times. From optical properties of ZnS:Ag:Cu thin film and after being analysed using Taue plot method, it is found that the energy gap of ZnS:Ag:Cu thin film is 2.48 eV. It can be concluded that the addition of Ag and Cu doped decrease the energy gap of ZnS (3.66 eV).


Sign in / Sign up

Export Citation Format

Share Document