scholarly journals ZnO/CdS Bilayer used for Electrode in Photovoltaic Device

2011 ◽  
Vol 21 (4) ◽  
pp. 379
Author(s):  
Dang Tran Chien ◽  
Pham Duy Long ◽  
Pham Van Hoi

In this article we present the fabrication and characterization of the nanoporous ZnO and/or ZnO/CdS thin films onto indium doped-tin oxide (ITO) substrates, based on the thermal evaporation technique followed by thermal treatment. The preparation method was relatively simple and low-cost for large scale uniform coating to produce clean, dense and strong adhesion to substrate thin films. The nanostructured ZnO and ZnO/CdS thin films were characterized by X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM). The nanostructured ZnO/CdS bilayer film was used in a photo-electrochemical (PEC) cell as a working electrode and a Pt net as a counter electrode. The results show that the photovoltaic cell with nanostructured ZnO/CdS bilayer film electrode has significantly improved photoelectric capability in comparison with that of ZnO electrode.

2013 ◽  
Vol 665 ◽  
pp. 254-262 ◽  
Author(s):  
J.R. Rathod ◽  
Haresh S. Patel ◽  
K.D. Patel ◽  
V.M. Pathak

Group II-VI compounds have been investigated largely in last two decades due to their interesting optoelectronic properties. ZnTe, a member of this family, possesses a bandgap around 2.26eV. This material is now a day investigated in thin film form due to its potential towards various viable applications. In this paper, the authors report their investigations on the preparation of ZnTe thin films using vacuum evaporation technique and their structural and optical characterizations. The structural characterization, carried out using an X-ray diffraction (XRD) technique shows that ZnTe used in present case possesses a cubic structure. Using the same data, the micro strain and dislocation density were evaluated and found to be around 1.465×10-3lines-m2and 1.639×1015lines/m2respecctively. The optical characterization carried out in UV-VIS-NIR region reveals the fact that band gap of ZnTe is around 2.2eV in present case. In addition to this, it was observed that the value of bandgap decreases as the thickness of films increases. The direct transitions of the carries are involved in ZnTe. Using the data of UV-VIS-NIR spectroscopy, the transmission coefficient and extinction coefficient were also calculated for ZnTe thin films. Besides, the variation of extinction coefficient with wavelength has also been discussed here.


2012 ◽  
Vol 60 (1) ◽  
pp. 137-140 ◽  
Author(s):  
RI Chowdhury ◽  
MS Islam ◽  
F Sabeth ◽  
G Mustafa ◽  
SFU Farhad ◽  
...  

Cadmium selenide (CdSe) thin films have been deposited on glass/conducting glass substrates using low-cost electrodeposition method. X-ray diffraction (XRD) technique has been used to identify the phases present in the deposited films and observed that the deposited films are mainly consisting of CdSe phases. The photoelectrochemical (PEC) cell measurements indicate that the CdSe films are n-type in electrical conduction, and optical absorption measurements show that the bandgap for as-deposited film is estimated to be 2.1 eV. Upon heat treatment at 723 K for 30 min in air the band gap of CdSe film is decreased to 1.8 eV. The surface morphology of the deposited films has been characterized using scanning electron microscopy (SEM) and observed that very homogeneous and uniform CdSe film is grown onto FTO/glass substrate. The aim of this work is to use n-type CdSe window materials in CdTe based solar cell structures. The results will be presented in this paper in the light of observed data.DOI: http://dx.doi.org/10.3329/dujs.v60i1.10352  Dhaka Univ. J. Sci. 60(1): 137-140 2012 (January)


2012 ◽  
Vol 510-511 ◽  
pp. 156-162 ◽  
Author(s):  
G.H. Tariq ◽  
M. Anis-ur-Rehman

Polycrystalline thin films of Cadmium Sulfide (CdS) have been extensively studied for application as a window layer in CdTe/CdS and CIGS/CdS thin film solar cells. Higher efficiency of solar cells is possible by a better conductivity of a window layer, which can be achieved by doping these films with suitable elements. CdS thin films were deposited on properly cleaned glass substrate by thermal evaporation technique under vacuum2×10-5mbar. Films were structurally characterized by using X-ray diffraction. The X-ray diffraction spectra showed that the thin films were polycrystalline in nature. Aluminum was doped chemically in as deposited and annealed thin films by immersing films in AlNO33.9H2O solutions respectively. Comparison between the effects of different doping ratios on the structural and optical properties of the films was investigated. Higher doping ratios have improved the electrical properties by decreasing the resistivity of the films and slightly changed the bandgap energy Eg. The grain size, strain, and dislocation density were calculated for as-deposited and annealed films.


2019 ◽  
Vol 37 (3) ◽  
pp. 317-323
Author(s):  
S.N. Vidhya ◽  
R.T. Karunakaran

AbstractCdS thin films with (1 1 1) orientation were prepared by chemical bath deposition technique at 80±5 °C using the reaction between NH4OH, CdCl2 and CS(NH2)2. The influence of annealing temperature varying from 150 °C to 250 °C was studied. X-ray diffraction studies revealed that the films are polycrystalline in nature with cubic structure. Various parameters, such as dislocation density, stress and strain, were also evaluated. SEM analysis indicated uniformly distributed nano-structured spherically shaped grains and net like morphology. Optical transmittance study showed the wide transmittance band and absence of absorption in the entire visible region. I-V characterization of p-Si/n-CdS diode and photoluminescence studies were also carried out for the CdS films.


2010 ◽  
Vol 7 (2) ◽  
pp. 495-498
Author(s):  
S. R. Vishwakarma ◽  
Aneet Kumar Verma ◽  
Ravishankar Nath Tripathi ◽  
Rahul. Rahul

The prepared starting materials has composition Cd0.60Se0.40 was used to fabrication of thin films. Cadmium selenide thin films of different thickness (400nm-700nm) deposited by electron beam evaporation technique on well cleaned glass substrate at substrate temperature 300 K. The X-ray diffraction pattern confirmed that the prepared thin films of composition Cd 0.60Se 0.40 has polycrystalline in nature. The resistivity, conductivity, Hall mobility, carrier concentration of the deposited films were calculated of different films thickness..


2018 ◽  
Vol 14 (2) ◽  
pp. 5477-5487 ◽  
Author(s):  
M. Abdel-Rahman

Binary semiconductor CdSe and CdS thin films are widely used for optoelectronic devices and window materials. The formation of ternary CdSe1-xSx thin films improves the physical characteristics of the binary CdSe thin films. The importance of CdSe1-xSx thin film is the change of band gap when incorporating S into the CdSe. This change in energy gap recommends CdSe1-xSx thin film for photovoltaic and photoconductive cells applications. In this work, polycrystalline CdSe1-xSx thin films have been grown in terms of thermal evaporation technique. X-ray diffractometry has been used to determine the lattice parameters and the crystallite size of the CdSe1-xSx mixed crystals. The variation in lattice parameters with composition from x = 0 to x = 1 were linearly. The crystallite size varies parabolically with the change in composition. The energy gap, opt g E , values of CdSe1-xSx thin films were estimated in terms of first derivative of absorbance with respect to wavelength and found to be increased with the formation of the ternary compound Cd-Se-S and with increasing the S content as expense of Se. This wider energy gap of the prepared films, which permits extra light to reach the solar cell junction, was correlated with the change in the microstructure parameters of thin films.


2020 ◽  
Vol 75 (8) ◽  
pp. 781-788
Author(s):  
Brijesh Kumar Yadav ◽  
Pratima Singh ◽  
Chandreshvar Prasad Yadav ◽  
Dharmendra Kumar Pandey ◽  
Dhananjay Singh

AbstractThe present work encloses structural and optical characterization of copper (I) selenide (Cu2Se) thin films. The films having thickness 85 nm have been deposited using thermal evaporation technique in initial step of work. The structural and morphological studies of deposited thin films are then done by X-ray diffraction (XRD), scanning electron microscope (SEM), and surface profilometer measurements. Later on, ultraviolet-visible-near-infrared (UV-VIS-NIR) spectrophotometer and Raman spectroscopic measurements are performed for optical characterization of films. The structure and morphology measurements reveal that deposited material of films is crystalline. The optical band gap estimated from the optical transmission spectra of the film has been found 1.90 eV. The mean values of refractive index, extinction coefficient, real and imaginary dielectric constant are received 3.035, 0.594, 9.623, and 3.598, respectively. The obtained results are compared and analyzed for justification and application of Cu2Se thin films.


2015 ◽  
Vol 1088 ◽  
pp. 91-95
Author(s):  
Ping Li ◽  
Shan Huang ◽  
Hong Cheng Pan

This article presents a simple method for fabrication of Au-CdS composite thin films onto indium-tin-oxide (ITO) coated glass substrates. The method starts with electrodeposition of CdS thin films onto ITO substrates and followed by spontaneous growth of Au nanoparticles onto the CdS surface in solutions containing AuCl4- ions. X-ray diffraction (XRD) and UV-vis spectroscopy were used to investigate the Au-CdS thin films. The photoelectrochemical property and sensing for Hg2+ ions of the Au-CdS/ITO were studied. The electrode exhibits a low limit of detection of 2.5 μM and a high selectivity for Hg2+ ions, even in the presence of a large excess (1000-fold) of other metal (Na+, K+, Ca2+, Mg2+, Cd2+, Pb2+, and Zn2+) ions.


2020 ◽  
Vol 62 ◽  
pp. 75-86 ◽  
Author(s):  
Alexandros Barnasas ◽  
Michalis V. Karavasilis ◽  
Christos Aggelopoulos ◽  
Christos D. Tsakiroglou ◽  
Panagiotis Poulopoulos

In this work, a low-cost method to produce ZnO nanostructured materials for the treatment of water polluted with model organic pollutants (e.g. dyes) is presented. Zinc and silver-coated Zn (Ag/Zn) films, fabricated via sputtering method were naturally oxidized via a simple, low-temperature, scalable thermal process. During oxidation, Ag/ZnO nanorods were grown on Zn foils after treating their surface with various agents (e.g. acids) and annealing in an oven at temperatures 385-400 °C. The ZnO and Ag/ZnO films on Zn were characterized by X-ray diffraction, scanning electron microscopy and photoluminescence spectroscopy. The cationic dye Methylene Blue (MB) was selected as model pollutant dissolved in water, and a batch photo-reactor was fabricated and used to to study the adsorption capacity and photocatalytic performance of films. The transient varation of MB concentration in aqueous solutions was measured with UV-Vis spectroscopy. Ag/ZnO demonstrated a strong MB adsorbion capacity in dark conditions, and a satisfactory MB photocatalytic degradation under UV light irradiation.The optimized doping of Ag in Ag/ZnO film enhanced its photocatalytic activity, and seems well-promising for the potential scale-up of Ag/ZnO films, and use in large-scale systems for water purification under UV light irradiation.


2015 ◽  
Vol 2 (2) ◽  
pp. 79-81
Author(s):  
Thambidurai.S ◽  
Kannan.P

CdS thin films were prepared by chemical bath deposition method on glass substrate, Bath temperature range of 800C. Steps using aqueous solution of cadmium sulphate and thiourea salts were used as cadmium Cd+2 and sulfur S-2 ions sources to prepare CdS thin films. Structural characterization was carried out by X-ray diffraction and optical transmission was carried out by UV-Vis spectrometer. Photoluminescence spectra were recorded in the in the range of 300 – 900 nm at the temperature range of 10 K


Sign in / Sign up

Export Citation Format

Share Document