Effects of Skill Level and Sensory Information on Golf Putting

1984 ◽  
Vol 58 (2) ◽  
pp. 611-613 ◽  
Author(s):  
Matthew Wannebo ◽  
T. Gilmour Reeve

To determine the role of sensory information in golf putting 22 subjects were classified as either high or low in skill. Subjects from both groups putted from two distances (5 and 15 ft.) under three different conditions: relevant visual cues (look at ball), no visual cues (blindfolded), and irrelevant visual cues (look at offset marker). The 2 × 2 × 3 analysis of variance with radial error as the dependent variable indicated significant main effects for each factor but no significant interactions. Relevant visual cues provided greater accuracy than did no visual cues or irrelevant visual cues.

2014 ◽  
Vol 26 (5) ◽  
pp. 1013-1020 ◽  
Author(s):  
Titia Gebuis ◽  
Bert Reynvoet

Changes in the sensory properties of numerosity stimuli have a direct effect on the outcomes of nonsymbolic number tasks. This suggests a prominent role of sensory properties in numerosity processing. However, the current consensus holds that numerosity is processed independent of its sensory properties. To investigate the role of sensory cues in ordinal number processes, we manipulated both dimensions orthogonally. Participants passively viewed the stimuli while their brain activity was measured using EEG. The results revealed an interaction between numerosity and its sensory properties in the absence of main effects. Different neural responses were present for trials where numerosity and sensory cues changed in the same direction compared with trials where they changed in opposite directions. These results show that the sensory cues are expected to change in concert with numerosity and support the notion that the visual cues are taken into account when judging numerosity.


1980 ◽  
Vol 50 (3_suppl) ◽  
pp. 1047-1056 ◽  
Author(s):  
Virginia Hayes ◽  
T. Gilmour Reeve

The purpose of this study was to determine the use of visual feedback by typists at various skill levels. 73 volunteers from 5 college typewriting classes completed three 1-min. timed typewriting trials and four 3-min. trials. Subjects' gross words per minute were used to classify subjects by skill level into five groups: 35 gross words per minute or less, 36 to 45, 46 to 55, 56 to 65, or 66 or more gross words per minute. Subjects performed each of the four 3-min. trials in a different condition of visual feedback: unrestricted visual feedback, visual feedback for response confirmation, visual feedback for response guidance, and restricted visual feedback. Three analyses of variance (groups × conditions) were calculated using gross words per minute, percent dependable feedback, and total errors as dependent variables. Main effects of groups and conditions were significant for gross words per minute and percent dependable feedback. Only the main effect of conditions was significant for total errors. There were no statistically significant interactions. Results suggest that typists at different skill levels use visual feedback similarly, with the best over-all performance occurring when visual feedback is available and used for response guidance.


2019 ◽  
Vol 84 (7) ◽  
pp. 1897-1911 ◽  
Author(s):  
James P. Trujillo ◽  
Irina Simanova ◽  
Harold Bekkering ◽  
Asli Özyürek

AbstractHumans are unique in their ability to communicate information through representational gestures which visually simulate an action (eg. moving hands as if opening a jar). Previous research indicates that the intention to communicate modulates the kinematics (e.g., velocity, size) of such gestures. If and how this modulation influences addressees’ comprehension of gestures have not been investigated. Here we ask whether communicative kinematic modulation enhances semantic comprehension (i.e., identification) of gestures. We additionally investigate whether any comprehension advantage is due to enhanced early identification or late identification. Participants (n = 20) watched videos of representational gestures produced in a more- (n = 60) or less-communicative (n = 60) context and performed a forced-choice recognition task. We tested the isolated role of kinematics by removing visibility of actor’s faces in Experiment I, and by reducing the stimuli to stick-light figures in Experiment II. Three video lengths were used to disentangle early identification from late identification. Accuracy and response time quantified main effects. Kinematic modulation was tested for correlations with task performance. We found higher gesture identification performance in more- compared to less-communicative gestures. However, early identification was only enhanced within a full visual context, while late identification occurred even when viewing isolated kinematics. Additionally, temporally segmented acts with more post-stroke holds were associated with higher accuracy. Our results demonstrate that communicative signaling, interacting with other visual cues, generally supports gesture identification, while kinematic modulation specifically enhances late identification in the absence of other cues. Results provide insights into mutual understanding processes as well as creating artificial communicative agents.


2019 ◽  
Vol 26 (2) ◽  
pp. 56-67 ◽  
Author(s):  
Hanna Hofmann ◽  
Carl-Walter Kohlmann

Abstract. Positive affectivity (PA) and negative affectivity (NA) are basic traits that affect work-related perceptions and behaviors and should be considered in any assessment of these variables. A quite common method to assess healthy or unhealthy types of work-related perceptions and behaviors is the questionnaire on Work-Related Coping Behavior and Experience Patterns (WCEP). However, the association of PA and NA with WCEP remained unclear. In a sample of teachers, physiotherapists, and teacher students ( N = 745; Mage = 35.07, SD = 12.49; 78% females), we aimed to identify the relevance of these basic traits. After controlling for age, gender, and type of occupation, we found main effects of PA and NA, with the specific combination of PA and NA being decisive for predicting the assignment to a WCEP type. The results highlight the need to include PA and NA in future assessments with the WCEP questionnaire.


2003 ◽  
Author(s):  
Chung-Hee Chung ◽  
Jun-Hee Hong ◽  
Hong-Sik Lee ◽  
Eun-Kyu Choi
Keyword(s):  

TAPPI Journal ◽  
2012 ◽  
Vol 11 (7) ◽  
pp. 37-46 ◽  
Author(s):  
PEDRO E.G. LOUREIRO ◽  
SANDRINE DUARTE ◽  
DMITRY V. EVTUGUIN ◽  
M. GRAÇA V.S. CARVALHO

This study puts particular emphasis on the role of copper ions in the performance of hydrogen peroxide bleaching (P-stage). Owing to their variable levels across the bleaching line due to washing filtrates, bleaching reagents, and equipment corrosion, these ions can play a major role in hydrogen peroxide decomposition and be detrimental to polysaccharide integrity. In this study, a Cu-contaminated D0(EOP)D1 prebleached pulp was subjected to an acidic washing (A-stage) or chelation (Q-stage) before the alkaline P-stage. The objective was to understand the isolated and combined role of copper ions in peroxide bleaching performance. By applying an experimental design, it was possible to identify the main effects of the pretreatment variables on the extent of metals removal and performance of the P-stage. The acid treatment was unsuccessful in terms of complete copper removal, magnesium preservation, and control of hydrogen peroxide consumption in the following P-stage. Increasing reaction temperature and time of the acidic A-stage improved the brightness stability of the D0(EOP)D1AP bleached pulp. The optimum conditions for chelation pretreatment to maximize the brightness gains obtained in the subsequent P-stage with the lowest peroxide consumption were 0.4% diethylenetriaminepentaacetic acid (DTPA), 80ºC, and 4.5 pH.


2019 ◽  
Author(s):  
Alexia Bourgeois ◽  
Carole Guedj ◽  
Emmanuel Carrera ◽  
Patrik Vuilleumier

Selective attention is a fundamental cognitive function that guides behavior by selecting and prioritizing salient or relevant sensory information of our environment. Despite early evidence and theoretical proposal pointing to an implication of thalamic control in attention, most studies in the past two decades focused on cortical substrates, largely ignoring the contribution of subcortical regions as well as cortico-subcortical interactions. Here, we suggest a key role of the pulvinar in the selection of salient and relevant information via its involvement in priority maps computation. Prioritization may be achieved through a pulvinar- mediated generation of alpha oscillations, which may then modulate neuronal gain in thalamo-cortical circuits. Such mechanism might orchestrate the synchrony of cortico-cortical interaction, by rendering neural communication more effective, precise and selective. We propose that this theoretical framework will support a timely shift from the prevailing cortico- centric view of cognition to a more integrative perspective of thalamic contributions to attention and executive control processes.


2000 ◽  
Vol 84 (6) ◽  
pp. 2984-2997 ◽  
Author(s):  
Per Jenmalm ◽  
Seth Dahlstedt ◽  
Roland S. Johansson

Most objects that we manipulate have curved surfaces. We have analyzed how subjects during a prototypical manipulatory task use visual and tactile sensory information for adapting fingertip actions to changes in object curvature. Subjects grasped an elongated object at one end using a precision grip and lifted it while instructed to keep it level. The principal load of the grasp was tangential torque due to the location of the center of mass of the object in relation to the horizontal grip axis joining the centers of the opposing grasp surfaces. The curvature strongly influenced the grip forces required to prevent rotational slips. Likewise the curvature influenced the rotational yield of the grasp that developed under the tangential torque load due to the viscoelastic properties of the fingertip pulps. Subjects scaled the grip forces parametrically with object curvature for grasp stability. Moreover in a curvature-dependent manner, subjects twisted the grasp around the grip axis by a radial flexion of the wrist to keep the desired object orientation despite the rotational yield. To adapt these fingertip actions to object curvature, subjects could use both vision and tactile sensibility integrated with predictive control. During combined blindfolding and digital anesthesia, however, the motor output failed to predict the consequences of the prevailing curvature. Subjects used vision to identify the curvature for efficient feedforward retrieval of grip force requirements before executing the motor commands. Digital anesthesia caused little impairment of grip force control when subjects had vision available, but the adaptation of the twist became delayed. Visual cues about the form of the grasp surface obtained before contact was used to scale the grip force, whereas the scaling of the twist depended on visual cues related to object movement. Thus subjects apparently relied on different visuomotor mechanisms for adaptation of grip force and grasp kinematics. In contrast, blindfolded subjects used tactile cues about the prevailing curvature obtained after contact with the object for feedforward adaptation of both grip force and twist. We conclude that humans use both vision and tactile sensibility for feedforward parametric adaptation of grip forces and grasp kinematics to object curvature. Normal control of the twist action, however, requires digital afferent input, and different visuomotor mechanisms support the control of the grasp twist and the grip force. This differential use of vision may have a bearing to the two-stream model of human visual processing.


2021 ◽  
Vol 13 (5) ◽  
pp. 2705
Author(s):  
Hagen Deusch ◽  
Pantelis T. Nikolaidis ◽  
José Ramón Alvero-Cruz ◽  
Thomas Rosemann ◽  
Beat Knechtle

(1) Background: Compared with marathon races, pacing in time-limited ultramarathons has only been poorly discussed in the literature. The aim of the present study was to analyze the interaction of performance level, age and sex with pacing during 6 h, 12 h or 24 h time-limited ultramarathons. (2) Methods: Participants (n = 937, age 48.62 ± 11.80 years) were the finishers in 6 h (n = 40, 17 women and 23 men), 12 h (n = 232, 77 women and 155 men) and 24 h (n = 665, 166 women and 409 men) ultramarathons. The coefficient of variation (CV), calculated as SD/mean, was used to described pacing. Low scores of CV denoted a more even pacing, and vice versa. A two-way analysis of variance examined the main effects and interactions of sex and race duration on age, race speed and pacing. (3) Results: More men participated in the longer race distances than in the shorter ones and men were older and faster than women. Comparing the 6 h, 12 h and 24 h races, the finishers in the 6 h were the fastest, the finishers in the 12 h were the oldest and the finishers in the 24 h showed the most variable pacing. Furthermore, the faster running speed in the 12 h (women, r = −0.64; men, r = −0.49, p < 0.001) and the 24 h (r = −0.47 in women and men, p < 0.001) was related to less variable pacing. (4) Conclusions: These data might help runners and coaches to choose the the proper duration of a race and training programs for their athletes.


Author(s):  
Adam F. Werner ◽  
Jamie C. Gorman

Objective This study examines visual, auditory, and the combination of both (bimodal) coupling modes in the performance of a two-person perceptual-motor task, in which one person provides the perceptual inputs and the other the motor inputs. Background Parking a plane or landing a helicopter on a mountain top requires one person to provide motor inputs while another person provides perceptual inputs. Perceptual inputs are communicated either visually, auditorily, or through both cues. Methods One participant drove a remote-controlled car around an obstacle and through a target, while another participant provided auditory, visual, or bimodal cues for steering and acceleration. Difficulty was manipulated using target size. Performance (trial time, path variability), cue rate, and spatial ability were measured. Results Visual coupling outperformed auditory coupling. Bimodal performance was best in the most difficult task condition but also high in the easiest condition. Cue rate predicted performance in all coupling modes. Drivers with lower spatial ability required a faster auditory cue rate, whereas drivers with higher ability performed best with a lower rate. Conclusion Visual cues result in better performance when only one coupling mode is available. As predicted by multiple resource theory, when both cues are available, performance depends more on auditory cueing. In particular, drivers must be able to transform auditory cues into spatial actions. Application Spotters should be trained to provide an appropriate cue rate to match the spatial ability of the driver or pilot. Auditory cues can enhance visual communication when the interpersonal task is visual with spatial outputs.


Sign in / Sign up

Export Citation Format

Share Document