High-Speed Sequential Vocal Response Production

1984 ◽  
Vol 59 (1) ◽  
pp. 43-50 ◽  
Author(s):  
S. Wiegersma

Studies of the effect of production rate on response bias in randomization tasks have led to contradictory results. While Teraoka (1963) reported an effect of production rate on repetition avoidance, Wagenaar (1970) did not find such an effect. This study was designed to show that the difference between the findings of Teraoka and Wagenaar reflected a difference in the range of production rates used in both studies and to study response bias in high-speed conditions. Three measures of response bias, the zero-order frequency effect, stereotyped orders, and repetitions, increase when production rate is greater than two responses per second. Even with a production rate of four or five responses per second, however, performance is not completely stereotyped or perseverative. This can be explained by assuming high-speed comparison processes which operate in a parallel fashion and simultaneously with response-execution processes.

2020 ◽  
Vol 68 (4) ◽  
pp. 303-314
Author(s):  
Yuna Park ◽  
Hyo-In Koh ◽  
University of Science and Technology, Transpo ◽  
University of Science and Technology, Transpo ◽  
University of Science and Technology, Transpo ◽  
...  

Railway noise is calculated to predict the impact of new or reconstructed railway tracks on nearby residential areas. The results are used to prepare adequate counter- measures, and the calculation results are directly related to the cost of the action plans. The calculated values were used to produce noise maps for each area of inter- est. The Schall 03 2012 is one of the most frequently used methods for the production of noise maps. The latest version was released in 2012 and uses various input para- meters associated with the latest rail vehicles and track systems in Germany. This version has not been sufficiently used in South Korea, and there is a lack of standard guidelines and a precise manual for Korean railway systems. Thus, it is not clear what input parameters will match specific local cases. This study investigates the modeling procedure for Korean railway systems and the differences between calcu- lated railway sound levels and measured values obtained using the Schall 03 2012 model. Depending on the location of sound receivers, the difference between the cal- culated and measured values was within approximately 4 dB for various train types. In the case of high-speed trains, the value was approximately 7 dB. A noise-reducing measure was also modeled. The noise reduction effect of a low-height noise barrier system was predicted and evaluated for operating railway sites within the frame- work of a national research project in Korea. The comparison of calculated and measured values showed differences within 2.5 dB.


2021 ◽  
Vol 13 (11) ◽  
pp. 6482
Author(s):  
Sergejus Lebedevas ◽  
Laurencas Raslavičius

A study conducted on the high-speed diesel engine (bore/stroke: 79.5/95.5 mm; 66 kW) running with microalgae oil (MAO100) and diesel fuel (D100) showed that, based on Wibe parameters (m and φz), the difference in numerical values of combustion characteristics was ~10% and, in turn, resulted in close energy efficiency indicators (ηi) for both fuels and the possibility to enhance the NOx-smoke opacity trade-off. A comparative analysis by mathematical modeling of energy and traction characteristics for the universal multi-purpose diesel engine CAT 3512B HB-SC (1200 kW, 1800 min−1) confirmed the earlier assumption: at the regimes of external speed characteristics, the difference in Pme and ηi for MAO100 and D100 did not exceeded 0.7–2.0% and 2–4%, respectively. With the refinement and development of the interim concept, the model led to the prognostic evaluation of the suitability of MAO100 as fuel for the FPT Industrial Cursor 13 engine (353 kW, 6-cylinders, common-rail) family. For the selected value of the indicated efficiency ηi = 0.48–0.49, two different combinations of φz and m parameters (φz = 60–70 degCA, m = 0.5 and φz = 60 degCA, m = 1) may be practically realized to achieve the desirable level of maximum combustion pressure Pmax = 130–150 bar (at α~2.0). When switching from diesel to MAO100, it is expected that the ηi will drop by 2–3%, however, an existing reserve in Pmax that comprises 5–7% will open up room for further optimization of energy efficiency and emission indicators.


2012 ◽  
Vol 262 ◽  
pp. 361-366
Author(s):  
Zhuo Fei Xu ◽  
Hai Yan Zhang ◽  
Ling Hui Ren

Roller-mark is a common problem in offset printing and its solution method is important for printing. A new detecting method of texture analysis was given in this paper. In this study, printing image was acquired with high-speed CCD. Compared the difference between printing image and standard image, a defective image was obtained. Then the reason of roller-marks was given by the texture recognition of defect image. Finally, experiments were taken to prove the feasibility and effectiveness of this new method for the roller-marks diagnosis in the offset printing machine.


Author(s):  
A. J. Gannon ◽  
G. V. Hobson ◽  
R. P. Shreeve ◽  
I. J. Villescas

High-speed pressure measurements of a transonic compressor rotor-stator stage and rotor-only configuration during stall and surge are presented. Rotational speed data showed the difference between the rotor-only case and rotor-stator stage. The rotor-only case stalled and remained stalled until the control throttle was opened. In the rotor-stator stage the compressor surged entering a cyclical stalling and then un-stalling pattern. An array of pressure probes was mounted in the case wall over the rotor for both configurations of the machine. The fast response probes were sampled at 196 608 Hz as the rotor was driven into stall. Inspection of the raw data signal allowed the size and speed of the stall cell during its growth to be investigated. Post-processing of the simultaneous signals of the casing pressure showed the development of the stall cell from the point of inception and allowed the structure of the stall cell to be viewed.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Neerav Abani ◽  
Jaal B. Ghandhi

Turbulent starting jets with time-varying injection velocities were investigated using high-speed schlieren imaging. Two solenoid-controlled injectors fed a common plenum upstream of an orifice; using different upstream pressures and actuation times, injection-rate profiles with a step increase or decrease in injection velocity were tested. The behavior of the jet was found to be different depending on the direction of the injection-velocity change. A step increase in injection velocity resulted in an increased rate of penetration relative to the steady-injection case, and a larger increase in injection velocity resulted in an earlier change in the tip-penetration rate. The step-increase data were found to be collapsed by scaling the time by a convective time scale based on the tip location at the time of the injection-velocity change and the difference in the injection velocities. A sudden decrease in injection velocity to zero was found to cause a deviation from the corresponding steady-pressure case at a time that was independent of the initial jet velocity, i.e., it was independent of the magnitude of the injection-velocity change. Two models for unsteady injection from the literature were tested and some deficiencies in the models were identified.


1987 ◽  
Vol 3 (1) ◽  
pp. 47-62 ◽  
Author(s):  
Ross H. Sanders ◽  
Barry D. Wilson

This study investigated the in-flight rotation of elite 3m springboard divers by determining the angular momentum requirement about the transverse axis through the divers center of gravity (somersault axis) required to perform a forward 1 1/2 somersault with and without twist. Three elite male divers competing in the 1982 Commonwealth Games were filmed using high-speed cinematography while performing the forward 1 1/2 somersault in the pike position and the forward 1 1/2 somersault with one twist in a free position. The film was digitized to provide a kinematic description of each dive. An inclined axis technique appeared to be the predominant means of producing twist after takeoff from the board. The angular momentum about the somersault axis after takeoff was greater for the forward 1 1/2 somersault with twist than the forward 1 1/2 somersault without twist for all three divers. The difference in angular momentum between the two dives of each diver ranged from 6% to 19%. The most observable difference between the dives during the preflight phases was the degree of hip flexion at takeoff. There was more hip flexion at takeoff in 5132D than 103B for all three divers. This difference ranged from 9° to 18° (mean = 14°).


Author(s):  
S. Tiguntsev

In classical physics, time is considered absolute. It is believed that all processes, regardless of their complexity, do not affect the flow of time The theory of relativity determines that the flow of time for bodies depends both on the speed of movement of bodies and on the magnitude of the gravitational potential. It is believed that time in space orbit passes slower due to the high speed of the spacecraft, and faster due to the lower gravitational potential than on the surface of the Earth. Currently, the dependence of time on the magnitude of the gravitational potential and velocity (relativistic effect) is taken into account in global positioning systems. However, studying the relativistic effect, scientists have made a wrong interpretation of the difference between the clock frequency of an orbiting satellite and the clock frequency on the Earth's surface. All further studies to explain the relativistic effect were carried out according to a similar scenario, that is, only the difference in clock frequencies under conditions of different gravitational potentials was investigated. While conducting theoretical research, I found that the frequency of the signal changes along the way from the satellite to the receiver due to the influence of Earth's gravity. It was found that the readings of two high-precision clocks located at different heights will not differ after any period of time, that is, it is shown that the flow of time does not depend on the gravitational potential. It is proposed to conduct full-scale experiments, during which some high-precision clocks are sent aboard the space station, while others remain in the laboratory on the surface of the earth. It is expected that the readings of the satellite clock will be absolutely identical to the readings of the clock in the Earth laboratory.


2013 ◽  
Vol 275-277 ◽  
pp. 1285-1291 ◽  
Author(s):  
Zheng Long Gao ◽  
Hong Fu Fan ◽  
Zhi Bin Gao

Unstable productivity analysis method was used to obtain the equivalent radius of 77 wells and the result shows that the equivalent radius ranges from 30 to 970m with an average value of 230m in McKittrick Hills. The difference range of the radius is mainly caused by varying formation properties, gas saturation, production time, etc. Permeability anisotropy changes the drainage from round to ellipse. The major axis and the minor axis of the ellipse are determined by the ratio of major and minor permeability. Current pressure distribution was obtained and was found to be consistent with the modified drainage results, which demonstrates that the unstable productivity analysis method is applicable in the study of gas well drainage radius. An interference well and an observation well’s model was constructed to study well interference quantitatively. When the well spacing is larger than 750m, the productivity will be reduced by 20%. The production rate of interference well is more sensitive to the cumulative production of observation well, when the production rate of interference well is below 16.8×104m3/d.


2010 ◽  
Vol 3 (3) ◽  
pp. 545-555 ◽  
Author(s):  
M. Cazorla ◽  
W. H. Brune

Abstract. A new ambient air monitor, the Measurement of Ozone Production Sensor (MOPS), measures directly the rate of ozone production in the atmosphere. The sensor consists of two 11.3 L environmental chambers made of UV-transmitting Teflon film, a unit to convert NO2 to O3, and a modified ozone monitor. In the sample chamber, flowing ambient air is exposed to the sunlight so that ozone is produced just as it is in the atmosphere. In the second chamber, called the reference chamber, a UV-blocking film over the Teflon film prevents ozone formation but allows other processes to occur as they do in the sample chamber. The air flows that exit the two chambers are sampled by an ozone monitor operating in differential mode so that the difference between the two ozone signals, divided by the exposure time in the chambers, gives the ozone production rate. High-efficiency conversion of NO2 to O3 prior to detection in the ozone monitor accounts for differences in the NOx photostationary state that can occur in the two chambers. The MOPS measures the ozone production rate, but with the addition of NO to the sampled air flow, the MOPS can be used to study the sensitivity of ozone production to NO. Preliminary studies with the MOPS on the campus of the Pennsylvania State University show the potential of this new technique.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5374
Author(s):  
Young-In Hwang ◽  
Yong-Il Kim ◽  
Dae-Cheol Seo ◽  
Mu-Kyung Seo ◽  
Woo-Sang Lee ◽  
...  

Residual stress, a factor affecting the fatigue and fracture characteristics of rails, is formed during the processes of fabrication and heat treatment, and is also generated by vertical loads on wheels due to the weight of vehicles. Moreover, damage to rails tends to accelerate due to the continuous increase in the number of passes and to the high speed of passing vehicles. Because this can have a direct effect on safety accidents, having a technique to evaluate and analyze the residual stresses in rails accurately is very important. In this study, stresses due to tensile loads applied to new rails and residual stresses remaining in used rails were measured by using magnetic Barkhausen noise method. First, a magnetization frequency and noise band suitable for the rails were selected. Moreover, by applying tensile loads to specimens and comparing the difference in magnetization amplitudes for each load, the stresses applied to the rails by using the magnetic Barkhausen noise method were measured, and the analysis of the results was verified. Based on these results, the difference in the results for the loads asymmetrically applied according to the wheel shape was analyzed by measuring for the head parts of used rails.


Sign in / Sign up

Export Citation Format

Share Document