scholarly journals Numerical Model of Marine Surface Winds and Its Application to the Prediction of Ocean Wind Waves

1974 ◽  
Vol 25 (3) ◽  
pp. 197-231 ◽  
Author(s):  
Ichiro Isozaki ◽  
Takeshi Uji
2021 ◽  
Vol 9 (8) ◽  
pp. 835
Author(s):  
Mochamad Riam Badriana ◽  
Han Soo Lee

For decades, the western North Pacific (WNP) has been commonly indicated as a region with high vulnerability to oceanic and atmospheric hazards. This phenomenon can be observed through general circulation model (GCM) output from the Coupled Model Intercomparison Project (CMIP). The CMIP consists of a collection of ensemble data as well as marine surface winds for the projection of the wave climate. Wave climate projections based on the CMIP dataset are necessary for ocean studies, marine forecasts, and coastal development over the WNP region. Numerous studies with earlier phases of CMIP are abundant, but studies using CMIP6 as the recent dataset for wave projection is still limited. Thus, in this study, wave climate projections with WAVEWATCH III are conducted to investigate how wave characteristics in the WNP will have changed in 2050 and 2100 compared to those in 2000 with atmospheric forcings from CMIP6 marine surface winds. The wave model runs with a 0.5° × 0.5° spatial resolution in spherical coordinates and a 10-min time step. A total of eight GCMs from the CMIP6 dataset are used for the marine surface winds modelled over 3 hours for 2050 and 2100. The simulated average wave characteristics for 2000 are validated with the ERA5 Reanalysis wave data showing good consistency. The wave characteristics in 2050 and 2100 show that significant decreases in wave height, a clockwise shift in wave direction, and the mean wave period becomes shorter relative to those in 2000.


2021 ◽  
Vol 12 (23) ◽  
pp. 33-48
Author(s):  
Goran Lončar ◽  
◽  
Filip Kalinić ◽  
Dalibor Carević ◽  
Damjan Bujak ◽  
...  

The morphodynamics of an artificial gravel beach in the Bay of Rijeka (Ploče Beach) was analyzed. The morphological changes of the beach face were monitored through an intense situation of gravitational surface wind waves from the incident SSW direction. A numerical modeling technique was applied, after initially establishing a numerical model for wave deformation. A model for sediment transport was established based on its results. Both models were based on the finite volume method. In addition, the partial contribution of the longshore component of sediment transport was analyzed based on empirical formulae. The modeling results were verified by comparing the positions and amounts of eroded/accumulated material along the beach with the processing of terrain images in the form of point clouds. The erosion and accumulation positions of the beach sediment material, obtained by numerical model simulations, corresponded to the surveyed positions. The total volume of eroded and accumulated material based on terrain image processing corresponded to the model values.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1425
Author(s):  
Panyang Huang ◽  
Xin Meng ◽  
Haiyang Dong ◽  
Lin Chong

Submarine pipelines are the lifelines of the national economy. Under the influence of typhoons, high-speed currents and waves continuously erode the seabed, leading to suspension or even rupture of pipelines. Therefore, it is of great importance to study the sediment transport under the action of waves and currents. A numerical model of sediment scouring and deposition combining wave and currents is established, which considered tidal current, storm surges, wind waves, and sediments in the East China Sea. Combining with the monitoring of the actual laying condition of pipelines, it is found that the area with the most serious scouring is around KP300. It is shown that the typhoon weather with high intensity and density will lead to the suspension of pipelines, which is noteworthy in the construction of marine engineering.


Sign in / Sign up

Export Citation Format

Share Document