Analysis and synthesis of converter control system of autonomous induction generator with field oriented control

2013 ◽  
Vol 62 (2) ◽  
pp. 267-279 ◽  
Author(s):  
Błażej Jakubowski ◽  
Krzysztof Pieńkowski

Abstract The paper presents the mathematical model of an autonomous induction generator with the AC load circuit and the converter control system of the voltage magnitude at the terminals of stator generator. The control algorithm and the structure of the control system are described. The simulation results of the control system are presented and discussed.

2014 ◽  
Vol 599-601 ◽  
pp. 673-679
Author(s):  
Shi Guo Chen ◽  
Li Hua Hu ◽  
Dong Sheng Wu ◽  
Xue Yong Chen

The soil’s temperature plays an important role of soil ecology research. In order to gain and control soil’ temperature. A control system is proposed for soil’s temperature. And a new control algorithm which is based on the PID algorithm is designed in the control system to handle the complex change of the soil’s temperature. It does not need to know the mathematical model of soil’s temperature. At last, the control result is analyzed in this paper. The result shows that the soil’s temperature is controlled ideal by this control system which is accurate to 0.5°C.


2014 ◽  
Vol 602-605 ◽  
pp. 933-936 ◽  
Author(s):  
Zheng Gang Liu ◽  
Hong Wei Ding ◽  
Jia Long Xiong ◽  
Qian Lin Liu ◽  
Xiao Hui Ma

In this paper, we propose P-detection and 1-Persistent CSMA/CA protocol. Using average cycle method, we established the mathematical model of the protocol. Through derivation, we obtain the throughput expression of this protocol. Simulation results show that this protocol improves the throughput and it is effective to enhance the system performance. Using this protocol, we completed the FPGA design of communication control system in WSN. The product passed waveform simulation and it is downloaded to the DB2 platform. Test results confirm the throughput of system has been increased, achieving the improvement of communication protocol for WSN.


2011 ◽  
Vol 383-390 ◽  
pp. 5945-5950
Author(s):  
Yan Hu ◽  
Zhen Guang ◽  
Xiao Yu Wang

A driving system for gearless traction machine plays an very important role in controlling elevator’s running. And its performances have a direct effect on the elevator’s performance. On the basic of the mathematical model of the gearless permanent magnetic synchronous machine (PMSM), id=0 vector control method and space vector pulse width modulation method are used in the control system. Then making a simulation on the system designed by MATLAB/SIMULINK. The simulation results show that the control method is feasible.


2012 ◽  
Vol 433-440 ◽  
pp. 7535-7540
Author(s):  
Dong Xing ◽  
Xiao Ning Zhang ◽  
Yong Ling Fu ◽  
Hai Tao Qi

This paper studies the mathematical model considering iron loss in the d-q axis of six phase permanent magnetic synchronous motor (PMSM), through the expansion of Field-Oriented Control (FOC) based on three phase PMSM, the simulation model of six phase PMSM under environment of simulink7.0 is set up, which has fast dynamic response, high steady-state precision, and has no problems about current balance compared to dual three phase PMSM. In order to get an accurate simulation results, this mathematical model takes iron loss into account. The simulation results show that iron loss have bad effects on the performance of PMSM especially affect the dynamic response, and to reduce the bad effects, the resistance of the motor core should be increased.


2014 ◽  
Vol 556-562 ◽  
pp. 2337-2341
Author(s):  
Yan Ping Wang ◽  
Xin Bing Yang ◽  
Yao Hui Jin ◽  
Bao Quan Liu ◽  
Jun Sheng Wang

The calculated result of the mathematical model based on the conventional transfer function has bigger deviation than the measured. In this paper the mathematical model of the work roll bending is derived. The modeling is different from conventional modeling used many presumptions and linear processing. The modeling calculated accurately the equivalent load spring using the method of influence function. The simulation results agree well with actual data of the bending system.


2014 ◽  
Vol 998-999 ◽  
pp. 704-707
Author(s):  
Shun Li Wang ◽  
Lian Sheng Li

ASR (Acceleration Slip Regulation) is the extension based on ABS. ABS and ASR are called by a joint name as slip regulation control system. Compared with two wheel drive car, four-wheel drive car has many defects, which is like snatch operation tedious and other defects. This paper has analyzed drive characteristic of four-wheel drive car and established drive simplify mathematical model. According to the mathematical model, we have established drive simulation model in MATLAB/SIMULINK environment, and made simulated analysis of different road surfaces for the model. The result indicated that slip regulation control system played preferable inhibiting effect for drive wheel spike of four-wheel drive car, and it can obtain a certain improvement of dynamic property. It verified feasibility of control algorithm and validity of control strategy at the same time.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012078
Author(s):  
Yang Song ◽  
Fangxiu Jia ◽  
Xiaoming Wang ◽  
Dingming Meng ◽  
Lei Zhuang

Abstract Based on the high control performance requirement of laser-guided mortar control system, the permanent magnet synchronous motor (PMSM) is adopted in this paper as the electromechanical actuator of the system, the mathematical model of the motor is analyzed, and the vector control technology is adopted to achieve precise control of position, speed and torque of the electromechanical actuator. Aiming at the characteristics of non-linearity, strong coupling and large parameter changes of the system in flight, an improved fuzzy neural network PID control method is proposed by combining the classical PID control algorithm with fuzzy control and neural network control algorithm to realize the real-time tuning and optimization of PID parameters. The mathematical model of the electromechanical actuator control system is established and simulated. The results show that the fuzzy neural network PID control has good tracking performance, small amplitude error, and strong adaptability to load changes.


Author(s):  
Bingwei Gao ◽  
Hao Guan ◽  
Wenming Tang ◽  
Wenlong Han ◽  
Shilong Xue

: In order to obtain the precise mathematical model of the position control system of the hydraulic quadruped robot, and to meet the requirements of the system parameters in different stages of motion, this paper studies the position control system of the single-leg joint of the hydraulic quadruped robot: First of all, this paper uses the closed-loop indirect identification method to identify the position of the leg joints of the hydraulic quadruped robot to obtain the mathematical model of the system; And then, the speed PID control algorithm and speed planning algorithm are designed, so that the system can quickly respond to the changes of system input according to the requirements of different speeds; Finally, the joint position control system of the hydraulic quadruped robot is simulated and verified by experiments. Background: The mathematical model of the positioning system of the hydraulic quadruped robot is clear, but the parameters in the model have the characteristics of uncertainty and time-variation. In the joint position control system of a hydraulic quadruped robot, different motion stages have different requirements for system parameters. Objective: The purpose of this study is to obtain the precise mathematical model of the position control system of the hydraulic quadruped robot and to meet the requirements of the system parameters in different stages of motion. Method: This research takes the hydraulic quadruped robot single-leg system as the research object and uses the closed-loop indirect identification method to identify the position of the leg joints of the hydraulic quadruped robot to obtain the mathematical model of the system. Then, the speed PID control method is designed and compared with the ordinary PID control by taking the positioning control accuracy of the robot before touching the ground as a standard to carry out the controlled trial. Results: In this research, the identification method and control algorithm are designed, and finally, the simulation and experimental research are carried out. The results of the simulation and experiment verify the correctness of the identification method and the effectiveness of the control algorithm. Conclusion: First of all, this paper uses the closed-loop indirect identification method to identify the position of the leg joints of the hydraulic quadruped robot to obtain the mathematical model of the system. Then, the speed PID control algorithm and speed planning algorithm are designed so that the system can quickly respond to the changes of system input according to the requirements of different speeds.


2014 ◽  
Vol 945-949 ◽  
pp. 777-780
Author(s):  
Tao Liu ◽  
Yong Xu ◽  
Bo Yuan Mao

Firstly, according to the structure characteristics of precision centrifuge, the mathematical model of its dynamic balancing system was set up, and the dynamic balancing scheme of double test surfaces, double emendation surfaces were established. Then the dynamic balance system controller of precision centrifuge was designed. Simulation results show that the controller designed can completely meet the requirements of precision centrifuge dynamic balance control system.


2013 ◽  
Vol 680 ◽  
pp. 488-494
Author(s):  
Hai Ming Niu ◽  
Zhong Xu Han ◽  
Huan Pao Huang ◽  
Hong Min Zhang

Base on the mathematical model of a common coordinated control system in field of thermal, by analyzing characteristics of the controlled object supercritical once-through boiler coordinated control system, the article puts forward suggestions for improvement, and verifies the results of the analysis by test.


Sign in / Sign up

Export Citation Format

Share Document