scholarly journals Composite Zones Produced in Iron Castings by In-Situ Synthesis of Tic Carbides

2013 ◽  
Vol 58 (2) ◽  
pp. 465-471 ◽  
Author(s):  
E. Olejnik ◽  
M. Górny ◽  
T. Tokarski ◽  
B. Grabowska ◽  
A. Kmita ◽  
...  

The study discusses a method of producing composite zones at the edge of castings made of ferritic-pearlitic ductile iron. Composite zones were produced in castings made of ferritic-pearlitic ductile iron at the casting edge. The reinforcing phase for the composite zone was TiC carbide, obtained by in-situ synthesis of substrates introduced into the mould in the form of compacts. The composition of the substrates of the reaction of the TiC synthesis was next enriched with an Fe filler added in an amount of 10 and 50 wt. % to investigate the possibility of changing the hardness of the composite zone. The addition of filler changed the surface fraction and the average size of TiC precipitates. In the case of the 50 wt. % addition, a tenfold reduction in the dimensions of the carbides was obtained. This increased their surface fraction relative to the compact composition containing only 10 wt. % of the filler. Changes in mechanical properties were analysed within the zone area by the measurement of hardness HV. The study showed a gradual decrease of the zone hardness in function of the amount of the filler added. This trend was also true as regards the composite zone in castings, where a significant refinement and increased surface content of the TiC precipitates was observed.

2012 ◽  
Vol 560-561 ◽  
pp. 344-348 ◽  
Author(s):  
Wei Wei ◽  
Kun Xia Wei ◽  
Igor V. Alexandrov ◽  
Qing Bo Du ◽  
Jing Hu

The effect of aging treatment on mechanical properties and electrical conductivity of Cu-5.7%Cr in situ composite produced by equal channel angular pressing (ECAP) was investigated here. The rotation and spreading of Cr particles was observed in Cu-5.7%Cr alloy during the ECAP, resulting in long thin in situ filaments. The equiaxed grains of the Cu phase with an average size of 200 nm were developed after eight passes of ECAP. When aging at 400~450 °C for 1 h, Cu-5.7%Cr composite after ECAP shows the maximum microhardness, and the electrical conductivity is larger than 70% of IACS. At 400 °C, the peak aging time appears for 0.5~2 h, dependent on the pre-strain for all ECAP samples. With the increase of ECAP passes, the enhancement of tensile strength due to the aging treatment declines, and even shows negative after eight passes of ECAP. The combination of ECAP and aging treatment would be a promising process to balance mechanical properties and electrical conductivity of Cu-5.7%Cr composite.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1121 ◽  
Author(s):  
Li ◽  
Liang ◽  
Tian ◽  
Yang ◽  
Xie ◽  
...  

Titanium composite strengthened by Ti3Al precipitations is considered to be one of the excellent materials that is widely used in engineering. In this work, we prepared a kind of Ti-Ti3Al metallic composite by in-situ synthesis technology during the SLM (selective laser melting) process, and analyzed its microstructure, wear resistance, microhardness, and compression properties. The results showed that the Ti-Ti3Al composite, prepared by in-situ synthesis technology based on SLM, had more homogeneous Ti3Al-enhanced phase dispersion strengthening structure. The grain size of the workpiece was about 1 μm, and that of the Ti3Al particle was about 200 nm. Granular Ti3Al was precipitated after the aluminum-containing workpiece formed, with a relatively uniform distribution. Regarding the mechanical properties, the hardness (539 HV) and the wear resistance were significantly improved when compared with the Cp-Ti workpiece. The compressive strength of the workpiece increased from 886.32 MPa to 1568 MPa, and the tensile strength of the workpiece increased from 531 MPa to 567 MPa after adding aluminum. In the future, the combination of in-situ synthesis technology and SLM technology can be used to flexibly adjust the properties of Ti-based materials.


2015 ◽  
Vol 3 (15) ◽  
pp. 8205-8214 ◽  
Author(s):  
Jia Wei ◽  
Shuo Zhang ◽  
Xiaoyun Liu ◽  
Jun Qian ◽  
Jiasong Hua ◽  
...  

BaTiO3/MWNT/PBO ternary composites with excellent microwave absorption properties, mechanical properties and thermostabilities.


2007 ◽  
Vol 330-332 ◽  
pp. 349-352
Author(s):  
Xiao Yan Lin ◽  
Xu Dong Li ◽  
Xing Dong Zhang

Hydroxyapatite/collagen composites were prepared in-situ synthesis. The composites were finally achieved by dehydration including air-drying and freeze-drying methods. FTIR, XPS and DSC were employed to investigate the composites dehydrated by two methods. The air-dried composites had better mechanical properties than those of the composites dried by freeze drying. Air-drying of the composite induced more bond formation and crosslink between collagen fibers and HA crystals compared with freeze-drying of the composite, as indicated by the shifting of amide A and I bands to the lower wavenumber and by the changes in the binding energy of O1s, Ca2p, and P2p, leading to the increase of the peak temperature of the composites. Collagen crosslink and bond formation in the air-dried composites were key factors to increase the bending strength of the composites. The results of this study confirm that in situ synthesis and air-dry method are effective ways to obtain nanoHA/COL composites with high mechanical properties.


2020 ◽  
Vol 998 ◽  
pp. 42-47
Author(s):  
Alena Pribulová ◽  
Peter Futaš ◽  
Marcela Pokusova

Worldwide production of ductile iron castings reached in year 2017 26,428,148 metric tons, which is 34% of the total weight of all castings made from cast iron. The most significant increase in ductile iron castings was recorded in Slovakia, up to 78.6%. Castings from ductile iron have a very huge utilization thanks their very good foundry and mechanical properties. The current economic situation in all industries forces entrepreneurs and producers to rationalize production and reduce production costs, with a worldwide trend to increase the share of steel scrap, a technology for the production of ductile cast iron. The paper describes the results of research focused on the effect of charge composition, mainly the share of scrap steel on the final properties and structure of ductile iron EN-GJS-500-7 under the operating conditions of foundry. Six melts with different charge composition were made. The samples from all melts were taken and chemical analysis, microstructure analysis and testing on mechanical properties were made on them. The mechanical properties of produced globular cast irons were according with the relevant standard. It is important to mention that there has been a significant increase in strength characteristics in melts in which the carbon content exceeded 4% (CE = 4.7 and 4.8%, respectively).


Sign in / Sign up

Export Citation Format

Share Document