Fabrication and Characterization of CU/B4C Surface Dispersion Strengthened Composite using Friction Stir Processing

2014 ◽  
Vol 59 (1) ◽  
pp. 83-87 ◽  
Author(s):  
R. Sathiskumar ◽  
N. Murugan ◽  
I. Dinaharan ◽  
S.J. Vijay

Abstract Friction stir processing has evolved as a novel method to fabricate surface metal matrix composites. The feasibility to make B4C particulate reinforced copper surface matrix composite is detailed in this paper. The B4C powders were compacted into a groove of width 0.5 mm and depth 5 mm on a 9.5 mm thick copper plate. A tool made of high carbon high chromium steel; oil hardened to 63 HRC, having cylindrical profile was used in this study. A single pass friction stir processing was carried out using a tool rotational speed of 1500 rpm, processing speed of 40 mm/min and axial force of 10 kN. A defect free interface between the matrix and the composite layer was achieved. The optical and scanning electron micrographs revealed a homogeneous distribution of B4C particles which were well bonded with the matrix. The hardness of the friction stir processed zone increased by 26% higher to that of the matrix material.

2019 ◽  
Vol 26 (04) ◽  
pp. 1850182
Author(s):  
P. MUTHUKUMAR ◽  
S. JEROME ◽  
R. JOHN FELIX KUMAR ◽  
S. PRAKASH

In this work, aluminum/titanium carbide (Al/TiC) surface composite has been fabricated by friction stir processing using a novel modular Direct Particle Injection Tool (DPI–FSP). The tool has a unique feature wherein the TiC particles have been transferred from the tool itself by spring adjusted plunger movement into the matrix. The microstructural observations from optical and scanning electron microscope (SEM)-EDS results revealed the homogeneous distribution of particles in the stirred zone (SZ) and the thickness of the formed surface composite layer (SCL) is approximately 0.34[Formula: see text]mm. X-ray diffraction results confirmed that the particles are reinforced in the aluminum matrix, and no intermetallics have been formed in the composite. The microhardness of composite was increased from 68 to 135[Formula: see text]Hv, and the impact test results showed that the toughness was almost comparable to that of the base metal.


2011 ◽  
Vol 10 (04n05) ◽  
pp. 1073-1076 ◽  
Author(s):  
YOONES ERFAN ◽  
SEYED FARSHID KASHANI-BOZORG

Friction stir processing (FSP) was employed to incorporate nano-sized SiC particles into the surface of AZ31 magnesium substrate in order to produce surface nanocomposite layers. Characterization of the microstructure of the processed layers exhibited powders agglomeration which was found to disperse with increasing the tool rotation speed/advancing speed ratio. A uniform distribution of SiC particles with a mean particle size of ~95 nm was achieved after second FSP passes. The matrix grain size was found to decrease by increasing the tool advancing speed and number of FSP passes; however, increasing the advancing speed resulted in introduction of defects which leads to tunnels. The micro hardness value of the composite layer with uniform distribution of nano-size SiC particles was found to be almost twice of that of the AZ31 substrate.


2014 ◽  
Vol 660 ◽  
pp. 214-218 ◽  
Author(s):  
Samir Sani Abdulmalik ◽  
Rosli Ahmad

Friction stir processing is a novel process evolved to fabricate surface metal matrix composites. Rice husk ash (RHA) is an agro-industrial waste and by product of rice husk. The feasibility of incorporating RHA powder into aluminium alloy AA6061-0 as reinforcement particles to make surface matrix composite via FSP is reported in this paper. The optical micrographs revealed a homogeneous distribution of RHA particles which were well bonded with the matrix in both first and fourth-passes of the FSP due to mechanical stirring. Microhardness of the stir zone SZ with the RHA particles of I-pass increased to about 106 HV, 40% higher than that of the base material 66 HV by dispersed RHA particles.


2018 ◽  
Vol 18 (3) ◽  
pp. 436-445
Author(s):  
Bashaer A Habeeb ◽  
Ahmed O Al-Roubaiy

Friction stir processing (FSP) is a new solid state technique, it is employed for theimprovement of the mechanical properties of a material and the production of surface layercomposites instead of conventional processing technologies. This research aims to study theability of applying Friction Stir Processing (FSP) to modify the surface of high densitypolyethylene (HDPE) reinforcing by B4C with a particle size of 0.4?m, Groove in themiddle of HDPE surface made to fill by B4C. Varity in the groove depth (0.6, 1.2 and1.8)mm used according to B4C ratio on HDPE substrate particles. Friction stir process wascarried out, using tool with cylindrical shape of pin and shoe tool to produce surface layercomposite. The effect of processing parameters including rotational and transverse speeds onthe mechanical properties of composite layer was studied. Wear test results show apronounced improvement in wear resistance of HDPE surface through reinforcementadditions of B4C at a ratio (5%, 10% and 15% ), where wear rate improved by (60%, 71%and 63%) respectively, as compared with as received HDPE, the surface compositeHDPE/B4C have good wear resistance. Hardness test results indicate that the hardness ofcomposite layer reinforced with (5%,10% and 15%) particles improved by( 26%, 35% and28% )respectively as compared with received HDPE. OM revealed that high tool rotationalspeed resulted in homogeneous distribution of B4C particles and vice versa.


2015 ◽  
Vol 830-831 ◽  
pp. 440-443 ◽  
Author(s):  
A. Thangarasu ◽  
N. Murugan

Friction stir processing (FSP) is a novel technique used to fabricate surface composites. This investigation is an attempt to made Al/Al2O3 and Al/SiC surface composite using FSP and compare the mechanical and metallurgical properties influenced by the types of reinforcement particles. Two plates were grooved with 0.8 mm in width, 5 mm in depth and 100 mm in length in the middle of the aluminium plate using wire EDM and compacted with Al2O3 and SiC powder. The FSP was carried out automatically on an indigenously built FSW machine at tool rotational speed of 1200 rpm, processing speed of 60 mm/min and axial force of 10 kN. The optical and Scanning Electron microstructures are precisely revealed the homogeneous distribution of Al2O3 and SiC particles in the stir zone of surface composite layer (SCL). The microhardness was measured across the cross section of SCL layers of Aluminium and Aluminium with SiC and Al2O3. The higher microhardness was obtained in Aluminium with SiC and Al2O3 composites fabricated by FSP. This is because of the higher hardness value of SiC particles than Al2O3 particles.


Author(s):  
G Girish ◽  
V Anandakrishnan

In this work, an Al–Zn–Mg–Cu/TiC metal–matrix composite was fabricated through recursive friction stir processing, and its microstructure, hardness, and tribological properties were investigated. Microstructure examination revealed a homogeneous dispersion of TiC particles in the matrix after six recursive passes. The grains were significantly refined and microhardness of the composite improved due to the presence of TiC particles. Friction coefficient and wear rate of the composite went up with an increase in the applied load and dropped significantly at higher sliding velocities. The morphology of the wear specimens experimented under different testing conditions was analyzed and the corresponding wear mechanisms discussed.


2020 ◽  
Vol 143 (8) ◽  
Author(s):  
Rabindra Prasad ◽  
Harikishor Kumar ◽  
Parshant Kumar ◽  
S. P. Tewari ◽  
J. K. Singh

Abstract Despite the fabrication of particulate-reinforced composites via friction stir processing (FSP), an attempt was made to utilize FSP for the homogenization of filler dispersion in ZrB2/AA7075 in-situ composites fabricated via stir casting route, with varying weight percentages of ZrB2. The friction stir processing was performed for up to three passes with 100% overlap. The as-cast and friction stir processed (FSPed) composites were characterized for their microstructural, microhardness, and tribological behavior. The microstructural features revealed the increase in the misorientation angle among grain boundaries, with an increase in ZrB2 content and a number of FSP passes. Furthermore, the homogeneity of ZrB2 particles in the Al alloy matrix was significantly influenced by the number of FSP passes, which was quantified by Lorenz curves and Gini Indices. The FSPed alloy and composites exhibited higher microhardness as compared to their un-processed counterparts. The tribological behavior was investigated for three different load levels, i.e., 15 N, 30 N, and 45 N. The slope of the wear-rate at 45 N revealed that the Al-alloy exhibited a considerable increase in wear severity, whereas as-cast and FSPed composites did not show a significant increase. Both wear-rate and coefficient of friction decreased with an increase in the number of FSP passes and ZrB2 content. The scanning electron micrographs of worn surfaces confirmed the reduction in adhesion, abrasion, and delamination with the number of FSP passes. However, the synergism among the three depicted the overall tribological behavior.


2013 ◽  
Vol 747-748 ◽  
pp. 313-319 ◽  
Author(s):  
Fen Cheng Liu ◽  
Qiang Liu ◽  
Chun Ping Huang ◽  
Kun Yang ◽  
Cheng Gang Yang ◽  
...  

AZ80/Al composite plate was fabricated by means of friction stir processing (FSP) aimed at the improvement of corrosion resistance of magnesium alloy. The cross-section microstructure, surface morphology and corrosion resistance of the Al composite layer were investigated. The experiment results indicated that a dense composite Al layer with superfine and uniform grains was formed, and a few amount of intermetallic compounds existed in the area of Mg/Al interface. The bonding strength of AZ80 magnesium alloy substrate and 1060 pure Al layer was proved to be high which was resulted from the metallurgical bonding of FSP. Microhardness measurement showed the continuous changing of microhardness values from the outmost surface of composite Al layer to the magnesium alloy substrate. Results of electrochemical corrosion test of the composite plate in 5 wt.% NaCl solution showed the better protection effect of the composite Al layer on the magnesium alloy in a corrosion medium. Almost the same corrosion level on the whole corrosion surface was observed which indicated the highly uniform microstructure of the composite layer. It was also proved that the plain arches on the outmost surface of the composite Al layer had no influence on the corrosion resistance of composite Al layer.


Sign in / Sign up

Export Citation Format

Share Document