scholarly journals The Prediction of Surface Temperature in Drilling of Ti6Al4V

2014 ◽  
Vol 59 (2) ◽  
pp. 467-471 ◽  
Author(s):  
B. Işik ◽  
A. Kentli

Abstract Titanium and its alloys are attractive materials due to their unique high strength-weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. The major application of titanium has been in the aerospace industry. However, the focus shift of market trends from military to commercial and aerospace to industry also been reported. On the other hand, titanium and its alloys are notorious for their poor thermal properties and are classified as difficult-to-machine materials. These properties limit the use of these materials especially in the markets where cost is much more of a factor than in aerospace. Machining is an important manufacturing process because it is almost always involved if precision is required and is the most effective process for small volume production. Due to the low machinability of the alloys under study, selecting the machining conditions and parameters is crucial. The range of feeds and cutting speeds, which provide a satisfactory tool life, is very limited. On the other hand, adequate tool, coating, geometry and cutting flow materials should be used: otherwise, the high wear of the tool, and the possible tolerance errors, would introduce unacceptable flaws in parts that require a high degree of precision. In this study, heat changes of Ti6Al4V has been examined on the basis of cutting parameters such as depth of cut, feedrate and cutting speed during drilling. Heat changes of the material and tool was monitored by a thermal camera. Maximum temperatures of the experiments were taken to examine optimum cutting parameters. Obtained results have been used to generate a regression analysis and it is seen that regression has given accurate data.

2014 ◽  
Vol 984-985 ◽  
pp. 42-47
Author(s):  
J. Nithyanandam ◽  
Sushil Laldas ◽  
K. Palanikumar

Titanium is one of the important kinds of material used in different engineering fields. They have very good properties like high strength to weight ratio, superior corrosion resistance and thermal properties. They are very attractive materials and has application aerospace, biomedical and automotive field. they are classified to be “difficult-to-Machine materials” as they posses poor thermal properties, poor machinability, etc.The prime important is with the study of machining characteristics and the optimization of the cutting parameters. In this paper Titanium alloy (Ti-6Al-4V) is taken, the dry turning experiments are carried out in semi-automatic lathe using poly crystalline diamond (PCD) cutting tool insert. The taguchi’s design of L27orthogonal array is done by four machining factors namely cutting speed, feed, nose radius and depth of cut at three levels. The optimal machining conditions are arrived by Signal-Noise ratio method with respect to surface roughness (Ra). The analysis of variance (ANOVA) and the percentage of contribution of feed, cutting speed, nose radius and depth of cut for better surface roughness is validated using S/N ratio. In this result indicated that the feed is a vital parameter followed by cutting speed, the nose radius and then by depth of cut. The worn out surface of the insert is examined by using scanning electron microscope (SEM).


2011 ◽  
Vol 264-265 ◽  
pp. 1154-1159
Author(s):  
Anayet Ullah Patwari ◽  
A.K.M. Nurul Amin ◽  
S. Alam

Titanium alloys are being widely used in the aerospace, biomedical and automotive industries because of their good strength-to-weight ratio and superior corrosion resistance. Surface roughness is one of the most important requirements in machining of Titanium alloys. This paper describes mathematically the effect of cutting parameters on Surface roughness in end milling of Ti6Al4V. The mathematical model for the surface roughness has been developed in terms of cutting speed, feed rate, and axial depth of cut using design of experiments and the response surface methodology (RSM). Central composite design was employed in developing the surface roughness models in relation to primary cutting parameters. The experimental results indicate that the proposed mathematical models suggested could adequately describe the performance indicators within the limits of the factors that are being investigated. The developed RSM is coupled as a fitness function with genetic algorithm to predict the optimum cutting conditions leading to the least surface roughness value. MATLAB 7.0 toolbox for GA is used to develop GA program. The predicted results are in good agreement with the experimental one and hence the model can be efficiently used to achieve the minimum surface roughness value.


2014 ◽  
Vol 541-542 ◽  
pp. 363-367 ◽  
Author(s):  
Saad Nawaz ◽  
Li Xiao Xing ◽  
Zhou Chai

Titanium alloys are attractive materials for aerospace industry due to their exceptional strength to weight ratio that is maintained at elevated temperatures and their good corrosion resistance. Major applications of Titanium alloys were military aerospace industry, but since last decade the trend has now shifted towards commercial industry. On the other hand Titanium alloys are notorious for being poor thermal conductor that leads to them being difficult materials for machining. In this experimental study brazed carbide end mill of grade 5 is used for rough down milling of Ti6Al4V for large depth of cut under different combinations of parameters and application of high pressure coolant. The machining performance was evaluated in terms of tool wear, tool life, thermal crack and tool breaking. The tool wear was mostly observed at the tool tip and at bottom part of tool thermal cracks were observed which propagated with respect to time. Flank wear due to scratching of the cutting chips and diffusion wear because of high thermal stresses were observed specially at the bottom of the cutting tool. At cutting speed of 38m/min tool wear couldnt be observed due to tool failure because of fracture under high thermal stresses. It was found that maximum tool life is obtained at the speed of 25m/min, feed rate of 150mm/min and depth of cut of 10mm. In the end it was concluded that machining of Ti6Al4V is a thermally dominant process which leads to high thermal stresses in machining zone that results in increasing tool wear rate and fracture propagation.


2009 ◽  
Vol 626-627 ◽  
pp. 387-392 ◽  
Author(s):  
L.T. Yan ◽  
Song Mei Yuan ◽  
Qiang Liu

The cutting performance (tool wear, surface roughness of machined work-piece and chip formation)of wet, dry and Minimum Quantity Lubrication (MQL) machining when milling of high strength steel (PCrNi2Mo) using cemented carbide tools under different (cutting speed, depth of cut, feed rate) was analyzed. The experimental results showed that as the cutting speed, depth of cut and feed rate changed, MQL conditions provided the lowest flank wear and the highest surface quality. Chip formation produced under MQL conditions become more favorable in terms of color and shape. The results obtained prove the potential of using MQL technique in the milling process of high strength steel (PCrNi2Mo) for high cutting speed, feed rate and depth of cut.


Author(s):  
J. Ma ◽  
Patrick Andrus ◽  
Nick H. Duong ◽  
Marissa Fischer ◽  
Sridhar Condoor ◽  
...  

Ti-6Al-4V is widely used in industry because of its high strength-to-weight ratio at elevated temperatures, its excellent resistance to fracture and corrosion, and biological properties. However, Ti-6Al-4V is classified as hard-to-cut material because of its high chemical reactivity with most tool materials and its low thermal conductivity that causes high temperature on the tool face. Consequently, prediction of the tool temperature distribution has great significance in predicting tool wear pattern. In this research, Finite Element Method (FEM) is employed to conduct numerical investigation of the effects of cutting conditions (cutting speed, feed/tooth, and axial depth of cut) in corner up milling on temperature of the tool rake face. The tool material used is general carbide and the behavior of the workpiece Ti-6Al-4V is described by using Johnson-Cook plastic model. Because of the computational expense, a separate heat transfer model is built to analyze the heat transfer process after the tooth disengages the workpiece and before it engages the workpiece again to predict change of temperature distribution during this cooling process. This research provides helpful guidance for selecting tool cooling strategies in up milling Ti-6Al-4V alloy.


2009 ◽  
Vol 69-70 ◽  
pp. 495-499
Author(s):  
M. Liu ◽  
Wei Wei Ming ◽  
Yun Shan Zhang ◽  
H. Xu ◽  
Ming Chen

TC11 is an α+β heat resistance titanium alloy with high strength to weight ratio, good corrosion resistance and high service temperature up to 500°C. Response Surface Methodology (RSM) is an empirical statistical modeling technique employed for multiple regression analysis using quantitative data obtained from properly designed experiments to solve multivariable equations simultaneously. In this paper, a series of experiments were carried out to evaluate the machinability of TC11 alloy based on RSM. Optimum results show feed rate at 0.05mm/r, depth of cut at 0.25mm and moderate cutting speed at 110.9m/min giving the satisfied machining quality.


2017 ◽  
Vol 47 ◽  
pp. 1-10 ◽  
Author(s):  
Halil Caliskan ◽  
Emre Altas ◽  
Peter Panjan

Titanium and its alloys are widely used in aerospace and aviation industries because of their high strength-to-weight ratio, high fracture resistance and corrosion resistance at elevated temperatures. However, chemical reactivity and low thermal conductivity of these alloys lead to adhesion and diffusion wears on carbide tools, respectively. In addition, fluctuations in cutting forces occur during the cutting process due to chip shear band formation; and chipping wear is observed at the tool cutting edge as a result. Therefore, machining of these alloys is a challenge for researchers. A common method to increase the lifetime of carbide tools is to coat them with a thin hard coating. In this study, a nanolayer AlTiN/TiN coating was deposited on carbide cutting tools using an industrial magnetron sputtering system in order to enhance their wear resistance and lifetime in milling of Ti6Al4V. The cutting tests with the coated tools were performed at a cutting speed of 50 m/min, feed rate of 0.1 mm/tooth and depth of cut of 1 mm under dry conditions. Tool wear and surface roughness on the workpiece were measured and recorded as a function of cutting distance. Wear mechanisms and types were revealed using optical and scanning electron microscopy and energy dispersive spectroscopy. It was found that the nanolayer AlTiN/TiN coated tools provide higher wear resistance and 4 times longer lifetime when compared to uncoated ones. The main observed wear types are notch wear and build-up edge formation on the cutting edge. A slight improvement in surface roughness of the workpiece was observed with the nanolayered coating.


2014 ◽  
Vol 941-944 ◽  
pp. 1963-1967
Author(s):  
Ming Hua Chen ◽  
Hou Chuan Yang ◽  
Xiao Wei Du ◽  
Bao Sheng Yang

Titanium alloy Ti-1023 is difficult to machine because of its high strength, chemical reactivity and low thermal conductivity. And it have tool wear and chipping due to its poor machinability. The relationship between milling force, tool life and milling parameters by adopting single-factor experimentation method is studied, The optimized milling parameters are selected, and processing efficiency is improved. The result shows: The appropriate cutting parameters of Titanium alloy Ti1023 are cutting speedVc=15~20m/min, feed per toothfz=0.12~0.18mm, depth of cut (DOC)ap=4~7mm; Besides, when the unit positive pressure of the cutting edge surpasses 320N, chipping is likely to happen on the blade.


2012 ◽  
Vol 186 ◽  
pp. 200-207 ◽  
Author(s):  
Claudia Serboi ◽  
Stefan Velicu ◽  
Philippe Darnis ◽  
Raynald Laheurte ◽  
Cristian Ionescu

Titanium and its alloys have found wide application in the aerospace, biomedical and automotive industries owing to their good strength-to weight ratio and high corrosion resistance. However, these alloys have very poor machinability, which is attributed to their inherent high strength maintained at elevated temperature and low thermal conductivity leading to high cutting temperatures. This paper presents the findings of an experimental investigation into the effects of cutting speed, feed rate and depth of cut when milling titanium alloy Ti-6Al-4V. The cutting forces were the response variables investigated. This experimental investigation is translated into a mathematical model of cutting forces designed on the basis of the results obtained from this research.


2021 ◽  
Vol 4 (1) ◽  
pp. 171-185
Author(s):  
Anıl Berk Dalkıran ◽  
Furkan Yılmaz ◽  
Samet Emre Bilim

AISI 420 stainless steel is one of the alloys that can be used in various applications due to its malleability, high strength, and weldability. In this study, the effects of cutting parameters (feed rate, depth of cut, and cutting speed) on the surface roughness were investigated during the turning of AISI 420 under dry test conditions using coated carbide and ceramic cutting inserts. Response surface methodology, analysis of variance, and statistical methods of the main effect plot were applied to investigate the effects of input parameters on response values. The results of this study showed that feed rate followed by the depth of cut had the most significant effect on output parameters. According to the experimental data, as the feed rate and depth of cut increase, the surface roughness increases.


Sign in / Sign up

Export Citation Format

Share Document