Numerical Analysis of Tool Performance in Up Milling of Ti-6Al-4V Alloy

Author(s):  
J. Ma ◽  
Patrick Andrus ◽  
Nick H. Duong ◽  
Marissa Fischer ◽  
Sridhar Condoor ◽  
...  

Ti-6Al-4V is widely used in industry because of its high strength-to-weight ratio at elevated temperatures, its excellent resistance to fracture and corrosion, and biological properties. However, Ti-6Al-4V is classified as hard-to-cut material because of its high chemical reactivity with most tool materials and its low thermal conductivity that causes high temperature on the tool face. Consequently, prediction of the tool temperature distribution has great significance in predicting tool wear pattern. In this research, Finite Element Method (FEM) is employed to conduct numerical investigation of the effects of cutting conditions (cutting speed, feed/tooth, and axial depth of cut) in corner up milling on temperature of the tool rake face. The tool material used is general carbide and the behavior of the workpiece Ti-6Al-4V is described by using Johnson-Cook plastic model. Because of the computational expense, a separate heat transfer model is built to analyze the heat transfer process after the tooth disengages the workpiece and before it engages the workpiece again to predict change of temperature distribution during this cooling process. This research provides helpful guidance for selecting tool cooling strategies in up milling Ti-6Al-4V alloy.

Author(s):  
Jianfeng Ma ◽  
Changqing Qiu ◽  
Shuting Lei

Ti-6AL-4V is widely used in the industry for the high strength-to-weight ratio at elevated temperature, its excellent resistance to fracture and corrosion, and biological properties. However, Ti-6AL-4V is hard to manufacture for its reactive chemical properties and low thermal conductivity that causes high temperature on the tool surface. Prediction of the tool temperature distribution from different manufacturing ways, up and down milling, has great significance in predicting tool wear pattern (cutting speed, feed/tooth, and axial depth of cut) in corner milling on temperature of the tool rake face. The tool material used is general carbide and Johnson-Cook plastic model is utilized to model the behavior of the workpiece Ti-6AL-4V. A separate Abaqus heat transfer model is used to analyze the heat transfer process after the tooth disengages the workpiece and before it engages the workpiece again to predict change of temperature distribution during this cooling process. The comparison of the up milling and down milling on the tool temperature is conducted.


2017 ◽  
Vol 47 ◽  
pp. 1-10 ◽  
Author(s):  
Halil Caliskan ◽  
Emre Altas ◽  
Peter Panjan

Titanium and its alloys are widely used in aerospace and aviation industries because of their high strength-to-weight ratio, high fracture resistance and corrosion resistance at elevated temperatures. However, chemical reactivity and low thermal conductivity of these alloys lead to adhesion and diffusion wears on carbide tools, respectively. In addition, fluctuations in cutting forces occur during the cutting process due to chip shear band formation; and chipping wear is observed at the tool cutting edge as a result. Therefore, machining of these alloys is a challenge for researchers. A common method to increase the lifetime of carbide tools is to coat them with a thin hard coating. In this study, a nanolayer AlTiN/TiN coating was deposited on carbide cutting tools using an industrial magnetron sputtering system in order to enhance their wear resistance and lifetime in milling of Ti6Al4V. The cutting tests with the coated tools were performed at a cutting speed of 50 m/min, feed rate of 0.1 mm/tooth and depth of cut of 1 mm under dry conditions. Tool wear and surface roughness on the workpiece were measured and recorded as a function of cutting distance. Wear mechanisms and types were revealed using optical and scanning electron microscopy and energy dispersive spectroscopy. It was found that the nanolayer AlTiN/TiN coated tools provide higher wear resistance and 4 times longer lifetime when compared to uncoated ones. The main observed wear types are notch wear and build-up edge formation on the cutting edge. A slight improvement in surface roughness of the workpiece was observed with the nanolayered coating.


2014 ◽  
Vol 541-542 ◽  
pp. 363-367 ◽  
Author(s):  
Saad Nawaz ◽  
Li Xiao Xing ◽  
Zhou Chai

Titanium alloys are attractive materials for aerospace industry due to their exceptional strength to weight ratio that is maintained at elevated temperatures and their good corrosion resistance. Major applications of Titanium alloys were military aerospace industry, but since last decade the trend has now shifted towards commercial industry. On the other hand Titanium alloys are notorious for being poor thermal conductor that leads to them being difficult materials for machining. In this experimental study brazed carbide end mill of grade 5 is used for rough down milling of Ti6Al4V for large depth of cut under different combinations of parameters and application of high pressure coolant. The machining performance was evaluated in terms of tool wear, tool life, thermal crack and tool breaking. The tool wear was mostly observed at the tool tip and at bottom part of tool thermal cracks were observed which propagated with respect to time. Flank wear due to scratching of the cutting chips and diffusion wear because of high thermal stresses were observed specially at the bottom of the cutting tool. At cutting speed of 38m/min tool wear couldnt be observed due to tool failure because of fracture under high thermal stresses. It was found that maximum tool life is obtained at the speed of 25m/min, feed rate of 150mm/min and depth of cut of 10mm. In the end it was concluded that machining of Ti6Al4V is a thermally dominant process which leads to high thermal stresses in machining zone that results in increasing tool wear rate and fracture propagation.


2015 ◽  
Vol 766-767 ◽  
pp. 681-686 ◽  
Author(s):  
J. Nithyanandam ◽  
K. Palanikumar ◽  
Sushil Laldas

Titanium alloys are attractive materials used in different engineering applications, due to its excellent combination of properties such as high strength to weight ratio, good corrosion resistance and high temperature applicability. They are also being used increasingly in chemical process, automotive, biomedical and nuclear plant. When machining of Titanium alloys with traditional tools the tool wear rate high. Because of high chemical reactivity and low modulus of elasticity resulting high cutting temperature and strong adhesion between the tool and work piece materials. The poly crystalline diamond (PCD) cutting tool is used for the turning experiment. The turning parameters for the experimental work are cutting speed, feed, nose radius, and depth of cut. From the results, analysis of the influences of the individual parameters on the surface roughness have been carried out. Fuzzy modeling technique is effectively used to predict the surface roughness in the machining of titanium alloy.


2010 ◽  
Vol 443 ◽  
pp. 371-375 ◽  
Author(s):  
Gusri Akhyar Ibrahim ◽  
Che Hassan Che Haron ◽  
Jaharah Abd. Ghani

Machining of titanium alloys as aerospace material that has extremely strength to weight ratio and resistant to corrosion at high-elevated temperature, become more interested topic. However, titanium alloys have low thermal conductivity, relative low modulus elasticity and high chemical reactivity with many cutting tool materials. The turning parameters evaluated are cutting speed (55, 75, 95 m/min), feed rate (0.15, 0.25, 0.35 mm/rev), depth of cut (0.10, 0.15, 0.20 mm) and tool grade of CVD carbide tool. The results that pattern of tool life progression is rapidly increase at the initial stage. It was due to small contact area between the cutting tool and the workpiece. At the first step of machining, the chip welded at the cutting edge but some chip removed away from the cutting edge. Wear mechanism produced are abrasive wear, adhesive, flaking, chipping at the cutting edge and coating delamination.


2014 ◽  
Vol 59 (2) ◽  
pp. 467-471 ◽  
Author(s):  
B. Işik ◽  
A. Kentli

Abstract Titanium and its alloys are attractive materials due to their unique high strength-weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. The major application of titanium has been in the aerospace industry. However, the focus shift of market trends from military to commercial and aerospace to industry also been reported. On the other hand, titanium and its alloys are notorious for their poor thermal properties and are classified as difficult-to-machine materials. These properties limit the use of these materials especially in the markets where cost is much more of a factor than in aerospace. Machining is an important manufacturing process because it is almost always involved if precision is required and is the most effective process for small volume production. Due to the low machinability of the alloys under study, selecting the machining conditions and parameters is crucial. The range of feeds and cutting speeds, which provide a satisfactory tool life, is very limited. On the other hand, adequate tool, coating, geometry and cutting flow materials should be used: otherwise, the high wear of the tool, and the possible tolerance errors, would introduce unacceptable flaws in parts that require a high degree of precision. In this study, heat changes of Ti6Al4V has been examined on the basis of cutting parameters such as depth of cut, feedrate and cutting speed during drilling. Heat changes of the material and tool was monitored by a thermal camera. Maximum temperatures of the experiments were taken to examine optimum cutting parameters. Obtained results have been used to generate a regression analysis and it is seen that regression has given accurate data.


Author(s):  
J. Nithyanandam ◽  
K. Palanikumar ◽  
Sushil Lal Das

Titanium and its alloys are used in many industrial and engineering applications because of their good properties, such as high strength to weight ratio, excellent fracture and corrosion resistance. The major application of titanium has been in the aerospace industry. When turning of titanium alloys with conventional tools, the tool wear rate increases, because of high chemical reactivity and strong adhesion between the tool and work piece materials. The nano coated carbide cutting tool is used for the turning experiment. The cutting parameter for the experimental works are cutting speed, feed rate, nose radius, and depth of cut. Fuzzy logic modeling is used for the prediction of surface roughness in machining of titanium alloy. From the results, the Fuzzy logic model is the best suited method for modeling the turning parameters of titanium alloy by using Nanocoated carbide tools.


2021 ◽  
pp. 014459872199800
Author(s):  
Xiaolong Wang ◽  
Wenke Zhang ◽  
Qingqing Li ◽  
Zhenqiang Wei ◽  
Wenjun Lei ◽  
...  

Radiant floor cooling systems are increasingly used in practice. The temperature distribution on the floor surface and inside the floor structure, especially the minimum and average temperature of floor surface, determines the thermal performance of radiant floor systems. A good temperature distribution of the floor structure is very important to prevent occupant discomfort and avoid possible condensation in summer cooling. In this study, based on the heat transfer model of the single-layer homogeneous floor structure when there is no internal heat radiation in the room, this paper proposes a heat transfer model of single-layer floor radiant cooling systems when the room has internal heat radiation. Using separation variable methods, an analytical solution was developed to estimate temperature distribution of typical radiant floor cooling systems with internal heat radiation, which can be used to calculate the minimum temperature and the average temperature of typical composite floor structure. The analytical solution was validated by experiments. The values of the measured experiments are in a good agreement with the calculations. The absolute error between the calculated and the measured floor surface temperatures was within 0.45°C. The maximum relative error was within 2.31%. Prove that this model can be accepted. The proposed method can be utilized to calculate the cooling capacity of a typical multi-layer composite floor and will be developed in the future study for design of a typical radiant floor cooling system.


Author(s):  
Leila Choobineh ◽  
Dereje Agonafer ◽  
Ankur Jain

Heterogeneous integration in microelectronic systems using interposer technology has attracted significant research attention in the past few years. Interposer technology is based on stacking of several heterogeneous chips on a common carrier substrate, also referred to as the interposer. Compared to other technologies such as System-on-Chip (SoC) or System-in-Package (SiP), interposer-based integration offers several technological advantages. However, the thermal management of an interposer-based system is not well understood. The presence of multiple heat sources in various die and the interposer itself needs to be accounted for in any effective thermal model. While a finite-element based simulation may provide a reasonable temperature prediction tool, an analytical solution is highly desirable for understanding the fundamentals of the heat transfer process in interposers. In this paper, we describe our recent work on analytical modeling of heat transfer in interposer-based microelectronic systems. The basic governing energy conservation equations are solved to derive analytical expressions for the temperature distribution in an interposer-based microelectronic system. These solutions are combined with an iterative approach to provide the three-dimensional temperature field in an interposer. Results are in excellent agreement with finite-element solutions. The analytical model is utilized to study the effect of various parameters on the temperature field in an interposer system. Results from this work may be helpful in the thermal design of microelectronic systems containing interposers.


2015 ◽  
Vol 13 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Kun Lei ◽  
Hongfang Ma ◽  
Haitao Zhang ◽  
Weiyong Ying ◽  
Dingye Fang

Abstract The heat conduction performance of the methanol synthesis reactor is significant for the development of large-scale methanol production. The present work has measured the temperature distribution in the fixed bed at air volumetric flow rate 2.4–7 m3 · h−1, inlet air temperature 160–200°C and heating tube temperature 210–270°C. The effective radial thermal conductivity and effective wall heat transfer coefficient were derived based on the steady-state measurements and the two-dimensional heat transfer model. A correlation was proposed based on the experimental data, which related well the Nusselt number and the effective radial thermal conductivity to the particle Reynolds number ranging from 59.2 to 175.8. The heat transfer model combined with the correlation was used to calculate the temperature profiles. A comparison with the predicated temperature and the measurements was illustrated and the results showed that the predication agreed very well with the experimental results. All the absolute values of the relative errors were less than 10%, and the model was verified by experiments. Comparing the correlations of both this work with previously published showed that there are considerable discrepancies among them due to different experimental conditions. The influence of the particle Reynolds number on the temperature distribution inside the bed was also discussed and it was shown that improving particle Reynolds number contributed to enhance heat transfer in the fixed bed.


Sign in / Sign up

Export Citation Format

Share Document