scholarly journals Dose-response effects of the Savory (Satureja khuzistanica) essential oil and extract on rumen fermentation characteristics, microbial protein synthesis and methane production in vitro

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mostafa Mehdipour Golbotteh ◽  
Mostafa Malecky ◽  
Hasan Aliarabi ◽  
Pouya Zamani ◽  
Mehdi Ganjkhanlou

Abstract The objective of the present study was to investigate dose-response effects of the essential oil (EO) and dry extract (EX) of Satureja khuzistanica (SK) on in vitro gas production kinetics, rumen fermentation, ruminal methanogenesis and microbial protein synthesis. So, EO and EX were tested at 0 (as control); 150 (low dose); 300, 450 (intermediate doses) and 600 mg/L (high dose). The gas produced over 24 h of incubation (GP24) decreased linearly with both EO and EX dosages (P<0.01). In vitro methane production was reduced by both EO (14–69%, depending on the included dose) and EX (7–58%). Microbial protein (MP) as well as the efficiency of microbial protein synthesis (EMPS) were improved by EO (18.8–49.8% and 20.4–61.5% for MP and EMPS, respectively) and to a lesser extent by EX (8.3–25.7% and 4.6–24.2% for MP and EMPS, respectively). Ammonia concentration was dropped in linear and quadratic manners with EO (P<0.05), and linearly with EX dosages (P<0.01). EO and EX exhibited depressive effects (in linear and quadratic (P<0.05), and linear manners (P<0.01), respectively) on total protozoa count. A mixed linear and quadratic effect was observed from both EO and EX on total VFA concentration (P<0.01). Total VFA concentration increased at 300 mg/L of EX, but decreased at high dose of both EO and EX. The acetate proportion increased with EO intermediate and high dosages, but it decreased at the expense of propionate at low and intermediate doses of EX. In total, these findings confirmed previous research on the great capacity of plant-based feed additives in positively modulating rumen fermentation that their effects may vary depending on the used doses. Specifically, these results suggest that EO and EX have high potentials to improve rumen functions at intermediate doses, which needs to be confirmed by in vivo experiments.

2021 ◽  
Author(s):  
Siyu Yi ◽  
Xiumin Zhang ◽  
Min Wang ◽  
Caixia Zou ◽  
Xuezong Chen ◽  
...  

Abstract Background: Starch has faster rate of rumen fermentation than fiber, and always causes a rapid increase in ruminal molecular hydrogen (H2) partial pressure and microbial protein synthesis, which may promote other H2 sinks to compete H2 from methanogenesis. The study was designed to investigate the effects of increasing starch content on methane (CH4), hydrogen gas (gH2) production, rumen fermentation, metabolic hydrogen ([H]) production, microbial protein (MCP) synthesis through in vitro ruminal batch incubation. Methods: Seven different treatments was prepared by replacing corn straw with corn grain, and starch content were 72, 185, 297, 410, 525, 634 and 747 g/kg DM.Results: Elevating starch content increased DM degradation (Plinear < 0.001), and decreased the CH4 (Plinear and Pquadratic < 0.001) and gH2 (Plinear < 0.001) productions relative to DM degraded. Elevating starch content increased VFA concentration (Plinear < 0.001), propionate molar percentage (Plinear < 0.001; Pquadratic = 0.001) and MCP concentration (Plinear and Pquadratic < 0.001), and decreased acetate molar percentage (Plinear < 0.001), acetate to propionate ratio (Plinear < 0.001) and estimated net [H] production relative to DM degraded (Plinear < 0.001). Elevating starch content decreased molar percentage of [H] utilized for CH4 (Pquadratic = 0.003) and gH2 (Plinear < 0.001) production. Conclusion: Increasing starch content alters rumen fermentation pathway from acetate to propionate production with reduction in efficiency of [H] production, promotes H2 utilization with enhanced MCP synthesis and leads to the reduction in efficiency of CH4 and gH2 production.


2019 ◽  
Vol 52 (4) ◽  
pp. 1609-1615 ◽  
Author(s):  
Chaichana Suriyapha ◽  
Thiwakorn Ampapon ◽  
Bounnaxay Viennasay ◽  
Maharach Matra ◽  
Chinda Wann ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1266
Author(s):  
Michelle Siqueira ◽  
Juana Chagas ◽  
João Paulo Monnerat ◽  
Carolina Monteiro ◽  
Robert Mora-Luna ◽  
...  

This study evaluated the effect of different roughages fed to sheep on nutrient and water intake, ingestive behavior, nitrogen balance, microbial protein synthesis, fermentation parameters, and methane production using an in vitro gas production system. The treatments consisted of five diets: cactus cladodes Nopalea (NUB) and Opuntia (OUB), both with the addition of sugarcane bagasse (SB) and urea/ammonium sulfate (urea/as); Tifton hay (TH); corn silage (CS); and sorghum silage (SS), also with added urea/as. The NUB provided greater (p ≤ 0.03) intakes of dry matter (1024 g/d), digestible organic matter (670 g/d), and crude protein (161 g/d) than those on the SS. The NUB provided greater (p < 0.01) dietary water intake (3023 g/d) than TH. The time spent on rumination was shorter (p < 0.01), and the idle time was longer in animals fed NUB and OUB than TH and CS. Microbial protein synthesis was not affected (p = 0.27). The final pH (6.4) of the incubation fluid and the concentration of NH3-N (39.05 mg/dL) were greater for NUB and OUB. Ruminal parameters and methane production were little or not affected by tested forages. We recommend using cactus cladodes in combination with sugarcane bagasse and urea/as in sheep diets.


2022 ◽  
Vol 951 (1) ◽  
pp. 012004
Author(s):  
S Nayohan ◽  
K G Wiryawan ◽  
A Jayanegara

Abstract The aim of this study was to determine the effect of coating urea by chitosan at graded levels on ammonia concentration and rumen fermentation in vitro. This study used Factorial Randomized Complete Block Design (RCBD) to test ammonia parameter and Randomized Complete Block Design (RCBD) for pH, microbial protein synthesis, dry matter and organic matter digestibility, and Volatile Fatty Acid (VFA). The treatments tested were: P0 = addition non coating urea 1%; P1 = coating urea by chitosan 1%; P2 = coating urea by chitosan 2%; P3 = coating urea by chitosan 3%. The data obtained were analysed by using ANOVA and continued with Tukey HSD test with SPSS version 25. The results of this study showed that the coating of urea chitosan had no significant effect on pH, dry matter and organic matter digestibility, microbial protein synthesis, and amonia concentration in the rumen. However, it significantly reduced (P <0.05) total VFA concentration. It can be concluded that the application of urea coating by chitosan does not affect on the degradation of urea in the rumen.


Sign in / Sign up

Export Citation Format

Share Document