scholarly journals A Novel Theoretical Modeling for Predicting the Sound Absorption of Woven Fabrics Using Modification of Sound Wave Equation and Genetic Algorithm

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Valentinus Galih Vidia Putra ◽  
Irwan ◽  
Andrian Wijayono ◽  
JulianyNingsih Mohamad ◽  
Yusril Yusuf

Abstract Woven fabric in Indonesia is generally known as a material for making clothes and it has been applied as an interior finishing material in buildings, such as sound absorbent material. This study presents a new method for predicting the sound absorption of woven fabrics using a modification of the wave equations and using genetic algorithms. The main aim of this research is to study the sound absorption properties of woven fabric by modeling using a modification of the sound wave equations and using genetic algorithms. A new model for predicting the sound absorption coefficient of woven fabric (plain, twill 2/1, rips and satin fabric) as a function of porosity, the weight of the fabric, the thickness of the fabric, and frequency of the sound wave, was determined in this paper. In this research, the sound absorption coefficient equation was obtained using the modification of the sound wave equation as well as using genetic algorithms. This new model included the influence of the sound absorption coefficient phenomenon caused by porosity, the weight of the fabric, the thickness of fabric as well as the frequency of the sound wave. In this study, experimental data showed a good agreement with the model

2019 ◽  
pp. 152808371985877 ◽  
Author(s):  
Pilar Segura-Alcaraz ◽  
Jorge Segura-Alcaraz ◽  
Ignacio Montava ◽  
Marilés Bonet-Aracil

Textile materials can be used as acoustic materials. In this study, the acoustic absorption coefficient of multilayer fabrics with 60 ends/cm and 15, 30, 45, and 60 picks/cm is measured when the fabric is added as a resistive layer on top of a polyester nonwoven, in order to study the influence of the fabric spatial structure in the acoustic absorption of the assembly. Five different fabric structures are used. Design of experiments and data analysis tools are used to describe the influence of two manufacturing factors on the sound absorption coefficient of the ensemble. These factors are the fabric weft count (picks/cm) and the thickness of the nonwoven (mm). The experimental conditions under which the maximum sound absorption coefficient is achieved are found. The influence of each factor and a mathematical model are obtained. Results of statistical and optimization analysis show that for the same fabric density, sound absorption coefficient increases as the number of layers decreases.


2019 ◽  
Vol 56 (4) ◽  
pp. 395-410
Author(s):  
Zohreh Zangiabadi ◽  
Mohammad Jafar Hadianfard

Pure polyurethane foam and nanocomposite foam are used to absorb sound. In this study, hollow silica nanospheres and rigid silica nanoparticles were added to the polyurethane matrix and their sound absorption properties were investigated by impedance tube and compared with pure polyurethane foam. Reinforcement phase influences on the morphology of the matrix were studied by scanning electron microscopy. Due to greater effects of the rigid silica nanoparticles on the morphology of the matrix, it was expected to increase the sound absorption coefficient of the rigid silica nanoparticles/polyurethane, more than hollow silica nanospheres/polyurethane, but the results show that the hollow silica nanospheres increased absorption coefficient of the composite more efficiently. The crust of hollow silica nanospheres increases the number of boundaries in a sound wave, and the air gap inside them cause the sound wave to damp. So the intrinsic property of the hollow silica nanospheres is more effective than the matrix morphology. Thus, by the same content of reinforcement in the matrix, hollow silica nanosphere/polyurethane sample with sound absorption coefficient of 0.87 for a thickness of 9 cm has the highest sound absorption coefficient compared to the rigid silica nanoparticles/polyurethane sample and pure polyurethane foam. In pure and nanocomposite samples, sound absorption coefficient increased by increasing the thickness of samples.


Akustika ◽  
2020 ◽  
pp. 51-57
Author(s):  
Martin Čulík ◽  
Anna Danihelová ◽  
Vojtěch Ondrejka ◽  
Patrik Aláč

When the sound wave touches the material (wall), some fraction reflex the wall, other fraction is absorbed and the rest fraction of the sound wave will go through the wall. So, in every enclosed space we can say about sound absorption, transformation of sound energy into some other energy. Sound absorption coefficient α (-) can be mentioned as criteria for the standard of sound absorption by the material. The article deals with the evaluation of sound absorption in the chosen materials which are utilised in wooden buildings, construction parts of partition walls and ceilings, floors and walls cover. There were used the following materials which are applied in the construction of wood buildings: particleboard (DTD), oriented strand board (OSB), beech plywood (PDP_BK), poplar plywood (PDP_TO), tetra pak recycled board (TETRA K), gypsum fibreboard (Fermacell), cement chipboard (CTD), plasterboard (Rigips) and medium-density fibreboard (MDF). The measurement was performed by the transfer function method in accordance with the standard ISO 10534-2. Under the frequency in the range 200 Hz – 2.0 kHz, the highest values of sound absorption coefficient were measured in CTD, PDP_TO, DTD and OSB within the interval from 0.05 to 0.53. Fermacell and Rigips have the highest values of sound absorption coefficient (0.3 – 0.4) within the frequency from 2.5 kHz to 4 kHz. At the same time, Fermacell, Rigips, but also MDF and TETRA K boards reached the lowest sound absorption (0 – 0.21) within the frequency interval 50 Hz – 2.0 kHz. Sound absorption assessed on the base of NRC coefficient was measured as very low (under 0.2) for all assessed materials, except of CTD. The tested board materials according to the standard ISO 11654 can be included among sound reflective material and little sound absorptive material. The highest level of noise reduction coefficient αNRC was measured at cement chipboard CTD (αNRC = 0.3) which can be included among absorptive materials. The results should be transformed into predictions in room and building acoustics, particularly in the design and projection of partition wall constructions in ultra-low energy buildings but also in the entire interior equipment.


2021 ◽  
Vol 13 (2) ◽  
pp. 637
Author(s):  
Tomas Astrauskas ◽  
Tomas Januševičius ◽  
Raimondas Grubliauskas

Studies on recycled materials emerged during recent years. This paper investigates samples’ sound absorption properties for panels fabricated of a mixture of paper sludge (PS) and clay mixture. PS was the core material. The sound absorption was measured. We also consider the influence of an air gap between panels and rigid backing. Different air gaps (50, 100, 150, 200 mm) simulate existing acoustic panel systems. Finally, the PS and clay composite panel sound absorption coefficients are compared to those for a typical commercial absorptive ceiling panel. The average sound absorption coefficient of PS-clay composite panels (αavg. in the frequency range from 250 to 1600 Hz) was up to 0.55. The resulting average sound absorption coefficient of panels made of recycled (but unfinished) materials is even somewhat higher than for the finished commercial (finished) acoustic panel (αavg. = 0.51).


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Chun-Won Kang ◽  
Eun-Suk Jang ◽  
Nam-Ho Lee ◽  
Sang-Sik Jang ◽  
Min Lee

AbstractWe investigated the effect of ultrasonic treatment on Malas (Homalium foetidum) gas permeability and sound absorption coefficient using the transfer function method. Results showed a longitudinal average Darcy permeability constant of 2.02 (standard deviation SD 0.72) for untreated wood and 6.15 (SD 3.07) for ultrasound-treated wood, a permeability increase of 3.04 times. We also determined the average sound absorption coefficients in the range of 50 to 6.4 kHz and NRC (noise reduction coefficient: average value of sound absorption coefficient value at 250, 500, 1000, and 2000 Hz) of untreated Malas. Those values were 0.23 (SD 0.02) and 0.13 (SD 0.01), respectively, while those of ultrasonic-treated Malas were 0.28 (SD 0.02) and 0.14 (SD 0.02), a 19.74% increase in average sound absorption coefficient.


2014 ◽  
Vol 1001 ◽  
pp. 171-176 ◽  
Author(s):  
Pavol Liptai ◽  
Marek Moravec ◽  
Miroslav Badida

This paper describes possibilities in the use of recycled rubber granules and textile materials combined with vermiculite panel. The aim of the research is the application of materials that will be absorbing or reflecting sound energy. This objective is based on fundamental physical principles of materials research and acoustics. Method of measurement of sound absorption coefficient is based on the principle of standing wave in the impedance tube. With a sound level meter is measured maximum and minimum sound pressure level of standing wave. From the maximum and minimum sound pressure level of standing wave is calculated sound absorption coefficient αn, which can take values from 0 to 1. Determination of the sound absorption coefficient has been set in 1/3 octave band and in the frequency range from 50 Hz to 2000 Hz. In conclusion are proposed possibilities of application of these materials in terms of their mechanical and physical parameters.


2018 ◽  
Vol 89 (16) ◽  
pp. 3342-3361 ◽  
Author(s):  
Tao Yang ◽  
Ferina Saati ◽  
Kirill V Horoshenkov ◽  
Xiaoman Xiong ◽  
Kai Yang ◽  
...  

This study presents an investigation of the acoustical properties of multi-component polyester nonwovens with experimental and numerical methods. Fifteen types of nonwoven samples made with staple, hollow and bi-component polyester fibers were chosen to carry out this study. The AFD300 AcoustiFlow device was employed to measure airflow resistivity. Several models were grouped in theoretical and empirical model categories and used to predict the airflow resistivity. A simple empirical model based on fiber diameter and fabric bulk density was obtained through the power-fitting method. The difference between measured and predicted airflow resistivity was analyzed. The surface impedance and sound absorption coefficient were determined by using a 45 mm Materiacustica impedance tube. Some widely used impedance models were used to predict the acoustical properties. A comparison between measured and predicted values was carried out to determine the most accurate model for multi-component polyester nonwovens. The results show that one of the Tarnow model provides the closest prediction to the measured value, with an error of 12%. The proposed power-fitted empirical model exhibits a very small error of 6.8%. It is shown that the Delany–Bazley and Miki models can accurately predict surface impedance of multi-component polyester nonwovens, but the Komatsu model is less accurate, especially at the low-frequency range. The results indicate that the Miki model is the most accurate method to predict the sound absorption coefficient, with a mean error of 8.39%.


Sign in / Sign up

Export Citation Format

Share Document