scholarly journals Effect of Bio Fertilizers and Inorganic Fertilizers on Growth, Productivity and Quality of Bread Wheat Cultivars

2018 ◽  
Vol 51 (4) ◽  
pp. 1-16 ◽  
Author(s):  
E.M. Hafez ◽  
S.A. Badawy

Abstract Integrated nutrient management strategies involving chemical and biological fertilizer is a real challenge to stop using the high rates of agrochemicals and to enhance sustainability of crop production. In order to study the effects of biofertilizers (Cerialin and Nitrobein) and chemical nitrogen levels (0, 85,170 and 250 kg N ha−1) on yield and yield attributes of two wheat cultivars (Sakha 94 and Gemmeiza 10), an agricultural experiment in the form of strip-split factorial design with three replications was conducted in Kafr El-Sheikh region, Egypt, in 2014/2015 and 2015/2016 growing seasons. The objective of this study was evaluation of the effects of these fertilizers separately and in integrated forms, and setting out the best fertilizer mixture. The results showed that treatment with biofertilizers and chemical nitrogen increased the growth, yield attributes, biological and grain yield. Both grain and biological yield produced a better result during the combination of nitrogen fertilizer and biofertilizers than using either method alone. Using biofertilizers increased biological yield through increase in number of grains spike−1, number of spikes m−2 and 1000 grain weight, which cause to increase in grain yield with significant changes in harvest index, as well as protein content. We may conclude that using biofertilizers (Cerialin or Nitrobein) and chemical nitrogen fertilizer (170 or 250 kg N ha−1) together had the maximum impact on yield. Then, we can decrease use of chemical fertilizers through using biofertilizers.

2019 ◽  
Vol 1 (2) ◽  
Author(s):  
Dillip Kumar Swain ◽  
Poonam Biswal

The climate change due to mingled effect of rising [CO2] level and temperature will influence crop production by affecting various components of the production system. In the present study, Open Top Chamber (OTC) facility has been used to realize the consequence of rising [CO2] with nutrient management on rice crop. The experiment was organized in open field and inside OTC with ambient [CO2] (400 ppm) and elevated [CO2] (25%, 50% and 75% higher than ambient) in wet season of the year 2017-18 at Kharagpur, India. Increase in [CO2] level resulted decreasing trend in growth, yield attributes (filled grains number) and grain yield. The nutrient management with use of only chemical fertilizer at recommended dose gave highest grain yield, which was comparable with integrated management using chemical and biofertilizer. Post-harvest processing quality such as head rice percentage and the head rice yield decreased significantly with CO2 elevation. The elevated [CO2] with 25 to 75% higher than ambient, reduced the head rice percentage by 13 to 21 %. The research stated that investigations on climate change adaptations should be made to avoid the negative impact of rising [CO2] level and temperature on crop yield and processing quality.


Author(s):  
Manish Yadav ◽  
N. J. Jadav ◽  
Dileep Kumar ◽  
C. H. Raval ◽  
Drashti Chaudhari ◽  
...  

The Field experiment was conducted to evaluate the effect of fertility management on growth, yield attributes and yield of pearlmillet in a Randomized Block Design (RBD) with ten treatments and four replications during summer, 2019 at Anand, Gujarat. The experiment comprises of different nutrient management practices including 100% and 75% RDF with 15 t and 10 t FYM along with Bio NP consortia. A significant higher growth and yield parameters enhancement with the application of 100% RDF + 15 t FYM ha-1 + Bio NP Consortia was recorded in plant height, number of tillers, length of ear head, protein content and biological yield. The treatment T5 produced maximum (91.5 q ha-1) biological yield and statistically it was on par with T9 and T5. However, the lowest biomass production (73.0 q ha-1) was reported in treatment T1. Results of different nutrient management practices on days to 50% flowering, days to maturity, ear head girth and test weight were found non-significant.  Protein content of pearlmillet was increased from 7.5% to 9.06% under different nutrient management practices. 


2013 ◽  
Vol 46 (2) ◽  
pp. 5-15 ◽  
Author(s):  
A. Esmailpour ◽  
M. Hassanzadehdelouei ◽  
A. Madani

Abstract Integrated nutrient management strategies involving chemical and biologic fertilizer is a real challenge to stop using the high rates of agrochemicals and to enhance sustainability of crop production. In order to study the effects of livestock manure, chemical nitrogen, and biologic (Azotobacter) fertilizers on yield and yield components of wheat, an agricultural experiment in the form of split factorial design with three replications was conducted in Elam region, Iran. The aim of this research was assessment of the effects of these fertilizers separately and in integrated forms; and setting out the best fertilizer mixture. The results showed that treatment with livestock manure, Azotobacter and chemical nitrogen increased plant height, biological and grain yield. Using livestock manure and Azotobacter increased biologic yield through increase in plant height which cause to increase in grain yield without any significant changes in harvest index and other yield components, but the use of chemical nitrogen caused an increase in plant height, No. of spikelete/spike, No. of grain/spike, one thousand grain weight and harvest index, biologic and grain yield. In the light of the results achieved, we may conclude that using livestock manure and chemical nitrogen fertilizer together with the Azotobacter had the maximum impact on yield; and that we can decrease use of chemical fertilizers through using livestock manure and biologic fertilizers and to reach to the same yield when we use only chemical fertilizers.


2019 ◽  
Vol 11 (2) ◽  
pp. 327-332
Author(s):  
Vipin Kumar Shukla ◽  
H. S. Kushwaha ◽  
S. K. Singh ◽  
D. K. Malviya ◽  
R. K. Tiwari

A field experiment was laid out in split plot design on residual effect of treatments comprising three nitrogen levels viz. N75 (N1), N100 (N2) and N125 (N3) in main-plot treatments and seven weed control treatments viz. (W1-butachlor + 1 Hand Weeding, W2-butachlor + 2 Mechanical Weeding, W3-butachlor + 2,4-D, W4-bispyribac sodium, W5-butachlor + bispyribac sodium, W6-HW-2, W7- control) as sub-plot treatments conducted during 2015-16 and 2016-17 at the Rajaula Agriculture Farm, MGCGVV, Satna (M.P.) to study the residual effect of N-levels and weed control methods on growth, yield and economics of wheat grown after rice. In case of succeeding wheat, the residual 125 kg N/ha performed the best with respect to growth, yield-attributes with the result 31.11 q/ha grain yield and Rs.33509/ha income. While, under sub plot treatments, Hand weedings two times were recorded significant grain yield (28.66 q/ha) and straw yield (38.17 q/ha) at (P <0.05) over control. However it was found non-significant different and also noticed higher over rest treatments. In this succession, Butachlor + 2, 4-D (0.80 kg/ha) was higher but in second position and similar trend was observed in successive way with rest of treatments.


2014 ◽  
Vol 2 (2) ◽  
pp. 93-100
Author(s):  
Shahnaj Yesmina ◽  
Moushumi Akhtarb ◽  
Belal Hossain

The experiment was conducted to find out the effect of variety, nitrogen level and harvesting time on yield and seed quality of barley. The treatments used in the experiment consisted of two varieties viz. BARI Barley 4 and BARI Barley 5, three harvesting time viz. 35, 40 and 45 Days after Anthesis (DAA) and nitrogen levels viz. 0, 70, 85 and 100 kg N ha-1 . The experiment was laid out in a spilt- spilt-plot design with three replications assigning the variety to the main plot, harvesting time to the sub-plots and nitrogen level to the sub-sub plots. Variety had significant effects on the all yield attributes except fertile seeds spike-1 . Seed quality parameters viz. normal seeds spike-1 , deformed seeds spike-1 , germination (%) and vigour index were statistically significant. The variety BARI Barley 5 produced higher grain yield and seed quality than BARI Barley 4. Grain yield from BARI Barley 5 and BARI Barley 4 were 4.59 t ha-1 and 4.24 t ha-1 , respectively. Significantly, the highest 1000-seed weight (46.90 g) was produced by BARI Barley 5 than (37.90 g) BARI Barley 4. The result revealed that harvesting time had significant effect on yield and yield attributes and seed quality parameters. Seed yield was highest (4.65 t ha-1 ) when the crop harvested at 40 DAA and it was increased linearly from 35 DAA. Maximum quality seed and 1000-seed weight (43.20 g) was obtained when the crop harvested at 40 DAA. All the yields, yield attributes and seed quality parameters were significantly influenced by nitrogen levels. The highest grain yield (5.14 t ha-1 ) was obtained when BARI Barley 5 variety was fertilized by 100 kg N ha-1 and the lowest (3.14 t ha-1 ) was obtained from control treatments. Normal seeds spike-1 , vigour index, germination (%) were better at 85 kg N ha-1 in variety of BARI Barley 5 than BARI Barley 4. So it can be concluded that BARI Barley 5 showed better result when fertilized with 100 kg N ha-1 and harvested at 40 DAA for getting maximum yield and 85 kg N ha-1 and harvested at 40 DAA for getting better quality seed.


1970 ◽  
Vol 9 (1-2) ◽  
pp. 117-125 ◽  
Author(s):  
MA Hossaen ◽  
ATM Shamsuddoha ◽  
AK Paul ◽  
MSI Bhuiyan ◽  
ASM Zobaer

This study was conducted to evaluate the efficacy of different organic manure and inorganic fertilizer on the yield and yield attributes of Boro Rice (Oryza sativa L.). The experiment consisted of 8 treatments, T0: Control, T1: 100% N100P15K45S20 (Recommended dose), T2: 50% NPKS + 5 t cowdung ha-1, T3: 70% NPKS + 3 t cowdung ha-1, T4: 50% NPKS + 4 t poultry manure ha-1, T5: 70% NPKS + 2.4 t poultry manure ha-1, T6: 50% NPKS + 5 t vermicompost ha-1and T7: 70% NPKS + 3 t vermicompost ha-1. At 30, 50, 70, 90 DAT and at harvest stage the tallest plant (24.18, 31.34, 44.67, 67.05 and 89.00 cm) and the greatest number of total tiller per hill (5.43, 11.64, 21.01 and 17.90) at same DAT was recorded from T5 and the lowest was observed from T0 in every aspect. The maximum number of effective tillers per hill (13.52), the longest panicle (24.59 cm), maximum number of total grain per plant (97.45), the highest weight of 1000 seeds (21.80 g), the maximum grain yield (7.30 t ha-1) and straw yield (7.64 t ha-1) was recorded from T5 treatment whereas the lowest number of effective tillers per hill (6.07) , the shortest panicle (16.45 cm) , the minimum total grain per plant (69.13) , the lowest weight of 1000 seeds (16.73 g), the lowest grain yield (2.06 t ha-1) and straw yield (4.63 t ha-1) was observed from T0 treatment. Although the highest biological yield was recorded from T5 treatment but statistically similar result were found from T3, T4 and T7 treatments. The highest harvest index also recorded for T5 treatment. It was obvious that yield of rice can be increased substantially with the judicious application of organic manure with chemical fertilizer. Keywords: Cowdung; poultry manure; vermicompost; NPKS; yield; yield contributing characters; boro rice DOI: http://dx.doi.org/10.3329/agric.v9i1-2.9486 The Agriculturists 2011; 9(1&2): 117-125


Author(s):  
Bimesh Dahal

There are many management methods for nutrient which can be specifically applied in farming systems. Integrated nutrient management (INM) generally denotes the combined use of organic and chemical fertilizers for producing crops in a sustainable manner and to maintain soil fertility as well as to supply nutrient in appropriate amount which consider social, ecological and economic impacts. This paper shows the importance and need of INM in agriculture production. Also, the relation of INM and yield attributes are analyzed and evaluated including growth and physical attributes of cowpea. The status of nutrient uptake by plant is also described along with other physical and chemical properties of soil. Finally, this paper also describes about the biofertilizer and its relation, impact and effect on crop production which can be used as a improved technology with the combination of other nutrient management practices.


Author(s):  
Ahmad Raza ◽  
Muhammad Nawaz ◽  
Muhammad U. Chattha ◽  
Imran Khan ◽  
Muhammad B. Chattha ◽  
...  

Weeds are major threat to global wheat production and cause serious threat to food security. Likewise, water scarcity is also a major threat to food production and its intensity is continuously soaring up across the globe. Organic mulches have potential to reduce weeds growth and conserve the soil moisture thus ensures the better crop growth and yield. Therefore, present study was conducted to compare the performance of different organic mulches in improving wheat growth and productivity. The study was comprised of different organic mulches; M1= No mulch (control) M2= maize straw mulch, M3= wheat straw mulch, M4= sorghum straw mulch and M5= rice straw mulch and three nitrogen levels N1 = 90 kg, N2 = 120 kg and N3= 150 kg/ha. The results indicated that both organic mulches and N rates had significant impact on growth, and yield traits. The maximum leaf area index (LAI), crop growth rate (CGR), productive tillers (307 m-2), grains/spike (46.22), 1000 grain weight (42.33 g) biological yield (13.76 t/ha) and grain yield 4.75 t/ha was obtained with sorghum straw mulch and minimum productive tillers (255.33 m-2), grains/spike (36.22), biological yield (11.46 t/ha) and grain yield (3.59 t/ha) was recorded in no mulch (control). Among nitrogen levels maximum productive tillers (290.6 m-2), grains/spike (42.80), 1000 grain weight (40.65 g), biological yield (13.44 t/ha) and grain yield (4.32 t/ha) was obtained with 150 kg/ha N and minimum productive tillers (274 m-2), grains/spike (38.13), 1000 grain weight (36.94 g) biological yield (11.98 t/ha) and grain yield (3.90 t/ha) was obtained with 90 N kg/ha. Thus, farmers can use sorghum straw mulch and N (150 kg ha-1) to improve the wheat productivity. However, farmers must be educated by government institute and adoptive research farms in order to understand and adaption of this approach.


2020 ◽  
pp. 1-7
Author(s):  
Teame Shimgabr ◽  
Negasi Gebereslasie ◽  
Haile Alene ◽  
Welesenbet Haftu ◽  
Nebyu Tsegay

Field experiments were conducted in three sites of Western Tigray, Ethiopia. The experiments aimed at identifying optimum the rate of the newly introduced NPS fertilizer impact with different levels on growth, yield attributes, yield and economics of sesame in vertisols of Western Tigray at the Humera station, Banat and Kebabo Kafta Humera and Tsegede Wereda’s. The treatments consisted of six levels of NPS 0, 50, 100, 150, 200 and 250 kg ha-1 and one blanket recommendation N and P was applied. The experiment was laid out in an RCBD with three replications. Yield of Sesame and yield related components showed significant difference (p < 0.001) compared to control. Results showed that number of branches plant-1, length of pod bearing zone (cm), plant height (cm), number of capsules plant-1, seeds capsule-1 and seed yield was significant differences at (P< 0.001) Grain yield increases from 444.8 kg ha-1 to 671.9 kg ha-1 as NPS and 444.8 kg ha-1 to 628 kg ha-1 as NP increases from 0 (control) to 100 kg ha-1 NPS and 41 kg N and 46 kg P205 ha-1 respectively. But NPS was not significant with blanket recommendation of N and P (41 kg N and 46 kg P205 ha-1), therefore no need to replace the NP by NPS fertilizer in the study area.


2018 ◽  
Vol 98 (3) ◽  
pp. 683-702 ◽  
Author(s):  
B.L. Beres ◽  
R.J. Graf ◽  
R.B. Irvine ◽  
J.T. O’Donovan ◽  
K.N. Harker ◽  
...  

To address knowledge gaps around enhanced efficiency urea fertilizer efficacy for nitrogen (N) management, a study was designed to improve integrated nutrient management systems for western Canadian winter wheat producers. Three factors were included in Experiment 1: (i) urea type [urea, urea + urease inhibitor—Agrotain®; urea + urease and nitrification inhibitor—SuperU®, polymer-coated urea—Environmentally Smart Nitrogen® (ESN®), and urea ammonium nitrate (UAN)], (ii) application method (side-band vs. spring-broadcast vs. 50% side-band: 50% spring-broadcast), and (iii) cultivar (AC Radiant hard red winter wheat vs. CDC Ptarmigan soft white winter wheat). The Agrotain® and CDC Ptarmigan treatments were removed in Experiment 2 to allow for additional application methods: (i) fall side-band, (ii) 50% side-band — 50% late fall broadcast, (iii) 50% side-band — 50% early spring broadcast, (iv) 50% side-band — 50% mid-spring broadcast, and (v) 50% side-band — 50% late spring broadcast. CDC Ptarmigan produced superior grain yield and N utilization over AC Radiant. Grain yield and protein content were influenced by N form and application method. Split applications of N usually provided the maximum yield and protein, particularly with Agrotain® or SuperU®. An exception to the poor fall-application results was the SuperU® treatments, which produced similar yield to the highest-yielding treatments. The results suggest that split applications of N might be most efficient for yield and protein optimization when combined with an enhanced efficiency urea product, particularly with urease or urease + nitrification inhibitors, and if the majority of N is applied in spring.


Sign in / Sign up

Export Citation Format

Share Document