scholarly journals Fluorescence lifetime imaging of red yeast Cystofilobasidium capitatum during growth

2018 ◽  
Vol 2 (2) ◽  
pp. 114-120 ◽  
Author(s):  
Martin Vanek ◽  
Filip Mravec ◽  
Martin Szotkowski ◽  
Dana Byrtusova ◽  
Andrea Haronikova ◽  
...  

AbstractRed yeast Cystofilobasidium capitatum autofluorescence was studied by means of confocal laser scanning microscopy (CLSM) to reveal distribution of carotenoids inside the cells. Yeasts were cultivated in 2L fermentor on glucose medium at permanent light exposure and aeration. Samples were collected at different times for CLSM, gravimetric determination of biomass and HPLC determination of pigments. To compare FLIM (Fluorescence Lifetime Imaging Microscopy) images and coupled data (obtained by CLSM) with model systems, FLIM analysis was performed on micelles of SDS:ergosterol and SDS:coenzyme Q with different content of ergosterol and coenzyme Q, respectively, and with constant addition of beta-carotene. Liposomes lecithin:ergosterol:beta-carotene were investigated too. Two different intracellular forms of carotenoids were observed during most of cultivations, with third form appeared at the beginning of stationary phase. Observed behavior is probably due to formation of some kind of carotenoid protective system in membranes of different compartments of yeast cell, especially cytoplasmic membrane.

Scanning ◽  
1992 ◽  
Vol 14 (3) ◽  
pp. 155-159 ◽  
Author(s):  
E. P. Buurman ◽  
R. Sanders ◽  
A. Draaijer ◽  
H. C. Gerritsen ◽  
J. J. F. van Veen ◽  
...  

2003 ◽  
Vol 31 (5) ◽  
pp. 1020-1027 ◽  
Author(s):  
D.S. Lidke ◽  
P. Nagy ◽  
B.G. Barisas ◽  
R. Heintzmann ◽  
J.N. Post ◽  
...  

We report the implementation and exploitation of fluorescence polarization measurements, in the form of anisotropy fluorescence lifetime imaging microscopy (rFLIM) and energy migration Förster resonance energy transfer (emFRET) modalities, for wide-field, confocal laser-scanning microscopy and flow cytometry of cells. These methods permit the assessment of rotational motion, association and proximity of cellular proteins in vivo. They are particularly applicable to probes generated by fusions of visible fluorescence proteins, as exemplified by studies of the erbB receptor tyrosine kinases involved in growth-factor-mediated signal transduction.


2008 ◽  
Vol 57 (12) ◽  
pp. 1466-1472 ◽  
Author(s):  
Helena Bujdáková ◽  
Ema Paulovičová ◽  
Silvia Borecká-Melkusová ◽  
Juraj Gašperík ◽  
Soňa Kucharíková ◽  
...  

The Candida antigen CR3-RP (complement receptor 3-related protein) is supposed to be a ‘mimicry’ protein because of its ability to bind antibody directed against the α subunit of the mammalian CR3 (CD11b/CD18). This study aimed to (i) investigate the specific humoral isotypic response to immunization with CR3-RP in vivo in a rabbit animal model, and (ii) determine the role of CR3-RP in the adherence of Candida albicans in vitro using the model systems of buccal epithelial cells (BECs) and biofilm formation. The synthetic C. albicans peptide DINGGGATLPQ corresponding to 11 amino-acids of the CR3-RP sequence DINGGGATLPQALXQITGVIT, determined by N-terminal sequencing, was used for immunization of rabbits to obtain polyclonal anti-CR3-PR serum and for subsequent characterization of the humoral isotypic response of rabbits. A significant increase of IgG, IgA and IgM anti-CR3-RP specific antibodies was observed after the third (P<0.01) and the fourth (P<0.001) immunization doses. The elevation of IgA levels suggested peptide immunomodulation of the IgA1 subclass, presumably in coincidence with Candida epithelial adherence. Blocking CR3-RP with polyclonal anti-CR3-RP serum reduced the ability of Candida to adhere to BECs, in comparison with the control, by up to 35 % (P<0.001), and reduced biofilm formation by 28 % (P<0.001), including changes in biofilm thickness and integrity detected by confocal laser scanning microscopy. These properties of CR3-RP suggest that it has potential for future vaccine development.


2015 ◽  
Vol 4 (1) ◽  
Author(s):  
Wolfgang Becker ◽  
Vladislav Shcheslavskiy

AbstractNear-infrared (NIR) dyes are used as fluorescence markers in small animal imaging and in diffuse optical tomography. In these applications it is important to know whether the dyes bind to proteins or to other tissue constituents, and whether their fluorescence lifetimes depend on the targets they bind to. Unfortunately, neither the optical beam paths nor the detectors of commonly used in confocal and multiphoton laser scanning microscopes (LSMs) directly allow for excitation and detection of NIR fluorescence. This paper presents three ways of adapting existing LSMs with time-correlated single photon counting (TCSPC) fluorescence lifetime imaging (FLIM) systems for NIR FLIM: 1) confocal systems with wideband beamsplitters and diode laser excitation, 2) confocal systems with wideband beamsplitters and one-photon excitation by titanium-sapphire lasers, and 3) two-photon systems with optical parametric oscillator (OPO) excitation and non-descanned detection. A number of NIR dyes are tested in biological tissue. All of them show clear lifetime changes depending on the tissue structures they are bound to. We therefore believe that NIR FLIM can deliver supplementary information about the tissue composition and on local biochemical parameters.


2019 ◽  
Vol 85 (16) ◽  
Author(s):  
Davy Verheyen ◽  
Xiang Ming Xu ◽  
Marlies Govaert ◽  
Maria Baka ◽  
Torstein Skåra ◽  
...  

ABSTRACTFood microstructure significantly affects microbial growth dynamics, but knowledge concerning the exact influencing mechanisms at a microscopic scale is limited. The food microstructural influence onListeria monocytogenes(green fluorescent protein strain) growth at 10°C in fish-based food model systems was investigated by confocal laser scanning microscopy. The model systems had different microstructures, i.e., liquid, xanthan (high-viscosity liquid), aqueous gel, and emulsion and gelled emulsion systems varying in fat content. Bacteria grew as single cells, small aggregates, and microcolonies of different sizes (based on colony radii [size I, 1.5 to 5.0 μm; size II, 5.0 to 10.0 μm; size III, 10.0 to 15.0 μm; and size IV, ≥15 μm]). In the liquid, small aggregates and size I microcolonies were predominantly present, while size II and III microcolonies were predominant in the xanthan and aqueous gel. Cells in the emulsions and gelled emulsions grew in the aqueous phase and on the fat-water interface. A microbial adhesion to solvent assay demonstrated limited bacterial nonpolar solvent affinities, implying that this behavior was probably not caused by cell surface hydrophobicity. In systems containing 1 and 5% fat, the largest cell volume was mainly represented by size I and II microcolonies, while at 10 and 20% fat a few size IV microcolonies comprised nearly the total cell volume. Microscopic results (concerning, e.g., growth morphology, microcolony size, intercolony distances, and the preferred phase for growth) were related to previously obtained macroscopic growth dynamics in the model systems for anL. monocytogenesstrain cocktail, leading to more substantiated explanations for the influence of food microstructural aspects on lag phase duration and growth rate.IMPORTANCEListeria monocytogenesis one of the most hazardous foodborne pathogens due to the high fatality rate of the disease (i.e., listeriosis). In this study, the growth behavior ofL. monocytogeneswas investigated at a microscopic scale in food model systems that mimic processed fish products (e.g., fish paté and fish soup), and the results were related to macroscopic growth parameters. Many studies have previously focused on the food microstructural influence on microbial growth. The novelty of this work lies in (i) the microscopic investigation of products with a complex composition and/or structure using confocal laser scanning microscopy and (ii) the direct link to the macroscopic level. Growth behavior (i.e., concerning bacterial growth morphology and preferred phase for growth) was more complex than assumed in common macroscopic studies. Consequently, the effectiveness of industrial antimicrobial food preservation technologies (e.g., thermal processing) might be overestimated for certain products, which may have critical food safety implications.


1999 ◽  
Vol 65 (8) ◽  
pp. 3710-3713 ◽  
Author(s):  
Martina Hausner ◽  
Stefan Wuertz

ABSTRACT Quantitative in situ determination of conjugative gene transfer in defined bacterial biofilms using automated confocal laser scanning microscopy followed by three-dimensional analysis of cellular biovolumes revealed conjugation rates 1,000-fold higher than those determined by classical plating techniques. Conjugation events were not affected by nutrient concentration alone but were influenced by time and biofilm structure.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5243 ◽  
Author(s):  
Dennis Kaden ◽  
Lars Dähne ◽  
Fanny Knorr ◽  
Heike Richter ◽  
Jürgen Lademann ◽  
...  

Nanoparticles can be applied to the hair follicles, which can serve as reservoirs for triggered drug release. A valid measurement method for the determination of the pH within the hair follicle in vivo has not been shown yet. Here, melamine formaldehyde particles up to 9 µm in size were applied on 40 freshly plucked scalp hairs of eight individuals to determine the pH along the hair shaft down to the root area of the hair. For fluorescent pH indicators, pyranine and Nile blue were incorporated into the particles. Measurements were conducted using confocal laser scanning microscopy. A pH decay gradient could be found from the hair sheath towards the external hair shaft (p = 0.012) with pH values at the hair sheath of 6.63 ± 0.09, at the hair sheath end at 6.33 ± 0.11, and at the external hair shaft at 6.17 ± 0.09 (mean ± SE). The pH difference between the hair sheath end and the external hair shaft was found to be significant (p = 0.036). The results might be comparable with the pH within the hair follicle in vivo indicating a pH increase towards the hair root.


Sign in / Sign up

Export Citation Format

Share Document