scholarly journals In vivo nematicidal potential of camel milk on Heligmosomoides polygyrus gastro-intestinal nematode of rodents

2018 ◽  
Vol 55 (2) ◽  
pp. 112-118 ◽  
Author(s):  
D. Alimi ◽  
A. Abidi ◽  
E. Sebai ◽  
M. Rekik ◽  
R. M. Maizels ◽  
...  

Summary Following our previous findings on the in vitro anthelmintic effect of camel milk on Haemonchus contortus, the current study aimed at investigating its in vivo effect. Investigations were carried out using mice infected with Heligmosomoides polygyrus which is a parasite commonly used to test the efficacy of anthelmintics. Thirty six Swiss white mice of both sexes aged 5 – 6 weeks old, and weighing between 20 and 25 g were orally infected with 0.5 ml dose of 100, 1-week-old H. polygyrus infective larvae (L3). After the pre-patent period, infected animals were randomly divided into 6 groups of 6 animals each. The nematicidal efficacy of camel milk was monitored through faecal egg count reduction (FECR) and total worm count reduction (TWCR). Four doses (8.25; 16.5; 33.0; 66.0 ml/kg body weight (bw)) for fresh camel milk and 22 mg/kg bw for albendazole were studied using a bioassay. Albendazole and 4 % dimethylsulfoxide were included in the protocol as reference drug and placebo, respectively. For all tested doses except 8.25 ml/kg bw, camel milk was effective in vivo against H. polygyrus reducing both faecal egg count and worm count (p < 0.05). The dose 66 ml/kg bw showed the highest nematicidal activity causing a 76.75 % FECR and a 69.62 % TWCR 7 day after initiating the treatment. These results support the possible use of camel milk in the control of gastro-intestinal helminthiasis.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Francesco Vacca ◽  
Caroline Chauché ◽  
Abhishek Jamwal ◽  
Elizabeth C Hinchy ◽  
Graham Heieis ◽  
...  

The IL-33-ST2 pathway is an important initiator of type 2 immune responses. We previously characterised the HpARI protein secreted by the model intestinal nematode Heligmosomoides polygyrus, which binds and blocks IL-33. Here, we identify H. polygyrus Binds Alarmin Receptor and Inhibits (HpBARI) and HpBARI_Hom2, both of which consist of complement control protein (CCP) domains, similarly to the immunomodulatory HpARI and Hp-TGM proteins. HpBARI binds murine ST2, inhibiting cell surface detection of ST2, preventing IL-33-ST2 interactions, and inhibiting IL-33 responses in vitro and in an in vivo mouse model of asthma. In H. polygyrus infection, ST2 detection is abrogated in the peritoneal cavity and lung, consistent with systemic effects of HpBARI. HpBARI_Hom2 also binds human ST2 with high affinity, and effectively blocks human PBMC responses to IL-33. Thus, we show that H. polygyrus blocks the IL-33 pathway via both HpARI which blocks the cytokine, and also HpBARI which blocks the receptor.



2018 ◽  
Vol 19 (11) ◽  
pp. 3606 ◽  
Author(s):  
Majda Batool ◽  
Affifa Tajammal ◽  
Firdous Farhat ◽  
Francis Verpoort ◽  
Zafar Khattak ◽  
...  

A new series of 1,3,4-oxadiazoles derivatives was synthesized, characterized, and evaluated for their in vitro and in vivo anti-thrombotic activity. Compounds (3a–3i) exhibited significant clot lysis with respect to reference drug streptokinase (30,000 IU), and enhanced clotting time (CT) values (130–342 s) than heparin (110 s). High affinity towards 1NFY with greater docking score was observed for the compounds (3a, 3i, 3e, 3d, and 3h) than the control ligand RPR200095. In addition, impressive inhibitory potential against factor Xa (F-Xa) was observed with higher docking scores (5612–6270) with Atomic Contact Energy (ACE) values (−189.68 to −352.28 kcal/mol) than the control ligand RPR200095 (Docking score 5192; ACE −197.81 kcal/mol). In vitro, in vivo, and in silico results proposed that these newly synthesized compounds might be used as anticoagulant agents.



2018 ◽  
Vol 46 (1) ◽  
pp. 14 ◽  
Author(s):  
Weibson Paz Pinheiro André ◽  
Wesley Lyeverton Correia Ribeiro ◽  
Lorena Mayana Beserra de Oliveira ◽  
Iara Tersia Freitas Macedo ◽  
Fernanda Cristina Macedo Rondon ◽  
...  

Background: Gastrointestinal nematodes are one of the major health and economic problem of sheep and goats in the world. The control of these nematodes is carried out conventionally with synthetic anthelminths, which favored the selection of gastrointestinal nematode (GIN) populations multiresistant to anthelmintics. The emergence of anthelmintic resistance has stimulated the search for new alternatives to control small ruminant GIN, standing out the use of plants and their bioactives compounds, such as essential oils (EO). The objective of this review was to present the main characteristics and anthelmintic activity of EO, their isolated compounds and drug delivery systems in the control of GIN.Review: Essential oils are a complex blend of bioactive compounds with volatile, lipophilic, usually odoriferous and liquid substances. EO are composed of terpenes, terpenoids, aromatic and aliphatic constituents. EO has various pharmacological activities of interest in preventive veterinary medicine such as antibacterials, antifungals, anticoccicids, insecticides and anthelmintics. In vitro and in vivo tests are used to validate the anthelmintic activity of EO on GIN. In vitro tests are low cost screening tests that allow the evaluation of the anthelmintic activity of a large amount of bioactive compounds on eggs, first (L1) and third stage larvae (L3), and adult nematodes. The antiparasitic effect of EO is related to its main compound or to the interaction of the compounds. These bioactive compounds penetrate the cuticle of the nematodes by transcuticular diffusion, altering the mechanisms of locomotion, besides causing cuticular lesions. Following in vitro evaluation, the acute and sub-chronic toxicity test should be performed to assess the toxicity of the bioactive compounds and to define the dose to be used in in vivo tests. In vivo tests are more reliable because the anthelmintic effectiveness of bioactive compounds is evaluated after the metabolization process. The metabolization process of the bioactive compounds can generate metabolites that exhibit or not anthelmintic effectiveness. The in vivo tests assessing the anthelmintic effectiveness of bioactive compounds in sheep and goats are the fecal egg count reduction test and the controlled test.  OE promoted reduction of egg elimination in faeces which may be related to cuticular and reproductive alterations in GIN, and reduction of parasite burden in in vivo tests. Due to the promising results obtained with OE in the in vivo tests, interest has been aroused in using nanotechnology as an alternative to increase the bioavailability of OE and consequently, potentializing its anthelmintic effect, reducing the dose and  toxicity of the biocompounds. In addition to nanotechnology, the isolation and chemical modification of compounds isolated from OE have been employed to obtain new molecules with anthelmintic action and understand the mechanism of action of EO on the small ruminant GIN.Conclusion: The use of EO and their compound bioactive in the control of resistant populations of GIN is a promising alternative. The adoption of strategies in which natural products can replace synthetic anthelmintics, such as in dry periods and use synthetic anthelmintics in the rainy season when the population in refugia in the pasture is high, thus reducing the dissemination of GIN resistant populations. As perspective, the evaluation of pharmacokinetics and pharmacodynamics of these natural products should be performed so that one defines treatment protocols that optimize the anthelmintic effect.



Author(s):  
Jirawat Riyaphan ◽  
Chien-Hung Jhong ◽  
May-Jwan Tsai ◽  
Der-Nan Lee ◽  
Max K. Leong ◽  
...  

The inhibition of alpha-glucosidase and alpha-amylase is one of clinic strategies for remedy the type II diabetes. Herbal medicines are reported to alleviate hyperglycemia. However, the constituents from those sources whether are targeted to the alpha-glucosidase and alpha-amylase still unexplored. This study attempted to select the compounds for efficacy of hypoglycemia via cellular and mouse levels. The results illustrated that the cytotoxicity in all tested compounds at various concentrations except the concentration of 16-hydroxy-cleroda-3,13-dine-16,15-olide (HCD) at 30 &micro;M were not significant difference (p &gt; 0.05) when compared with the untreated control. Acarbose (reference drug), Antroquinonol, Catechin, Quercetin, Actinodaphnine, Curcumin, HCD, Docosanol, Tetracosanol, Berberine, and Rutin could effectively inhibit the alpha-glucosidase activity of Caco-2 cells when compared with the control (maltose). The compounds (Curcumin, HCD, Tetracosanol, Antroquinonol, Berberine, Catechin, Actinodaphnine, and Rutin) could reduce blood sugar level at 30 min in tested mice. The effects of tested compounds on area under curve (AUC) were significant (p &lt; 0.05) among Acarbose, Tetracosanol, Antroquinonol, Catechin, Actinodaphnine, and Rutin along with Berberine and Quercetin. In in vitro (alpha-glucosidase) with in vivo (alpha-amylase) experiments suggest that bioactive compounds can be a potential inhibitor candidate of alpha-glucosidase and alpha-amylase for the alleviation of type II diabetes.



2018 ◽  
Vol 17 (4) ◽  
pp. 1235-1246 ◽  
Author(s):  
Abdelnaser A. Badawy ◽  
Mohammed A. El-Magd ◽  
Sana A. AlSadrah

Background/Objectives: In the Middle East, people consume camel milk regularly as it is believed to improve immunity against diseases and decrease the risk for cancer. Recently, it was noted that most of the beneficial effects of milk come from their nanoparticles, especially exosomes. Herein, we evaluated the anticancer potential of camel milk and its exosomes on MCF7 breast cancer cells (in vitro and in vivo) and investigated the possible underlying molecular mechanism of action. Methods/Results: Administration of camel milk (orally) and its exosomes (orally and by local injection) decreased breast tumor progression as evident by ( a) higher apoptosis (indicated by higher DNA fragmentation, caspase-3 activity, Bax gene expression, and lower Bcl2 gene expression), ( b) remarkable inhibition of oxidative stress (decrease in MDA levels and iNOS gene expression); ( c) induction of antioxidant status (increased activities of SOD, CAT, and GPX), ( d) notable reduction in expression of inflammation-( IL1b, NFκB), angiogenesis-( VEGF) and metastasis-( MMP9, ICAM1) related genes; and ( e) higher immune response (high number of CD+4, CD+8, NK1.1 T cells in spleen). Conclusions: Overall, administration of camel milk–derived exosomes showed better anticancer effect, but less immune response, than treatment by camel milk. Moreover, local injection of exosomes led to better improvement than oral administration. These findings suggest that camel milk and its exosomes have anticancer effect possibly through induction of apoptosis and inhibition of oxidative stress, inflammation, angiogenesis and metastasis in the tumor microenvironment. Thus, camel milk and its exosomes could be used as an anticancer agent for cancer treatment.



Parasitology ◽  
2020 ◽  
Vol 147 (11) ◽  
pp. 1216-1228
Author(s):  
Cristina Fonseca-Berzal ◽  
Cristiane França da Silva ◽  
Denise da Gama Jaen Batista ◽  
Gabriel Melo de Oliveira ◽  
José Cumella ◽  
...  

AbstractIn previous studies, we have identified several families of 5-nitroindazole derivatives as promising antichagasic prototypes. Among them, 1-(2-aminoethyl)-2-benzyl-5-nitro-1,2-dihydro-3H-indazol-3-one, (hydrochloride) and 1-(2-acetoxyethyl)-2-benzyl-5-nitro-1,2-dihydro-3H-indazol-3-one (compounds 16 and 24, respectively) have recently shown outstanding activity in vitro over the drug-sensitive Trypanosoma cruzi CL strain (DTU TcVI). Here, we explored the activity of these derivatives against the moderately drug-resistant Y strain (DTU TcII), in vitro and in vivo. The outcomes confirmed their activity over replicative forms, showing IC50 values of 0.49 (16) and 5.75 μm (24) towards epimastigotes, 0.41 (16) and 1.17 μm (24) against intracellular amastigotes. These results, supported by the lack of toxicity on cardiac cells, led to better selectivities than benznidazole (BZ). Otherwise, they were not as active as BZ in vitro against the non-replicative form of the parasite, i.e. bloodstream trypomastigotes. In vivo, acute toxicity assays revealed the absence of toxic events when administered to mice. Moreover, different therapeutic schemes pointed to their capability for decreasing the parasitaemia of T. cruzi Y acute infected mice, reaching up to 60% of reduction at the peak day as monotherapy (16), 79.24 and 91.11% when 16 and 24 were co-administered with BZ. These combined therapies had also a positive impact over the mortality, yielding survivals of 83.33 and 66.67%, respectively, while untreated animals reached a cumulative mortality of 100%. These findings confirm the 5-nitroindazole scaffold as a putative prototype for developing novel drugs potentially applicable to the treatment of Chagas disease and introduce their suitability to act in combination with the reference drug.



2018 ◽  
Vol 93 (04) ◽  
pp. 434-439 ◽  
Author(s):  
A. Zamilpa ◽  
C. García-Alanís ◽  
M.E. López-Arellano ◽  
V.M. Hernández-Velázquez ◽  
M.G. Valladares-Cisneros ◽  
...  

AbstractThe in vitro nematicidal effect of Chenopodium ambrosioides and Castela tortuosa n-hexane extracts (E-Cham and E-Cato, respectively) on Haemonchus contortus infective larvae (L3) and the anthelmintic effect of these extracts against the pre-adult stage of the parasite in gerbils were evaluated using both individual and combined extracts. The in vitro confrontation between larvae and extracts was performed in 24-well micro-titration plates. The results were considered 24 and 72 h post confrontation. The in vivo nematicidal effect was examined using gerbils as a study model. The extracts from the two assessed plants were obtained through maceration using n-hexane as an organic agent. Gerbils artificially infected with H. contortus L3 were treated intraperitoneally with the corresponding extract either individually or in combination. The results showed that the highest individual lethal in vitro effect (96.3%) was obtained with the E-Cham extract at 72 h post confrontation at 40 mg/ml, followed by E-Cato (78.9%) at 20 mg/ml after 72 h. The highest combined effect (98.7%) was obtained after 72 h at 40 mg/ml. The in vivo assay showed that the individual administration of the E-Cato and E-Cham extracts reduced the parasitic burden in gerbils by 27.1% and 45.8%, respectively. Furthermore, the anthelmintic efficacy increased to 57.3% when both extracts were administered in combination. The results of the present study show an important combined nematicidal effect of the two plant extracts assessed against L3 in gerbils.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Myeong A Choi ◽  
Sun You Park ◽  
Hye Yun Chae ◽  
Yoojin Song ◽  
Chiranjeev Sharma ◽  
...  

Abstract To develop novel CNS penetrant HDAC inhibitors, a new series of HDAC inhibitors having benzoheterocycle were designed, synthesized, and biologically evaluated. Among the synthesized compounds, benzothiazole derivative 9b exhibited a remarkable anti-proliferative activity (GI50 = 2.01 μM) against SH-SY5Y cancer cell line in a dose and time-dependent manner, better than the reference drug SAHA (GI50 = 2.90 μM). Moreover, compound 9b effectively promoted the accumulation of acetylated Histone H3 and α-tubulin through inhibition of HDAC1 and HDAC6 enzymes, respectively. HDAC enzyme assay also confirmed that compound 9b efficiently inhibited HDAC1 and HDAC6 isoforms with IC50 values of 84.9 nM and 95.9 nM. Furthermore, compound 9b inhibited colony formation capacity of SH-SY5Y cells, which is considered a hallmark of cell carcinogenesis and metastatic potential. The theoretical prediction, in vitro PAMPA-BBB assay, and in vivo brain pharmacokinetic studies confirmed that compound 9b had much higher BBB permeability than SAHA. In silico docking study demonstrated that compound 9b fitted in the substrate binding pocket of HDAC1 and HDAC6. Taken together, compound 9b provided a novel scaffold for developing CNS penetrant HDAC inhibitors and therapeutic potential for CNS-related diseases.



Sign in / Sign up

Export Citation Format

Share Document