scholarly journals Effects of Varus Orthotics on Lower Extremity Kinematics During the Pedal Cycle

2014 ◽  
Vol 15 (4) ◽  
Author(s):  
Jonathan Sinclair ◽  
Hayley Vincent ◽  
Paul John Taylor ◽  
Jack Hebron ◽  
Howard Thomas Hurst ◽  
...  

AbstractPurpose. Cycling has been shown to be associated with a high incidence of chronic pathologies. Foot orthoses are frequently used by cyclists in order to reduce the incidence of chronic injuries. The aim of the current investigation was to examine the influence of different varus orthotic inclines on the three-dimensional kinematics of the lower extremities during the pedal cycle. Methods. Kinematic information was obtained from ten male cyclists using an eight-camera optoelectronic 3-D motion capture system operating at 250 Hz. Participants cycled with and without orthotic intervention at three different cadences (70, 90 and 110 RPM). The orthotic device was adjustable and four different wedge conditions (0 mm - no orthotic, 1.5 mm, 3.0 mm and 4.5 mm) were examined. Two-way repeated measures ANOVAs were used to compare the kinematic parameters obtained as a function of orthotic inclination and cadence. Participants were also asked to subjectively rate their comfort in cycling using each of the four orthotic devices on a 10-point Likert scale. Results. The kinematic analysis indicated that the orthotic device had no significant influence at any of the three cadences. Analysis of subjective preferences showed a clear preference for the 0 mm, no orthotic, condition. Conclusions. This study suggests that foot orthoses do not provide any protection from skeletal malalignment issues associated with the aetiology of chronic cycling injuries.

Kinesiology ◽  
2017 ◽  
Vol 49 (2) ◽  
pp. 178-184
Author(s):  
Jonathan Sinclair ◽  
Paul John Taylor

Squash is associated with a high incidence of chronic injuries. Currently there is a trend in many sports for players to select minimalist footwear. The aim of the current investigation was to examine the effects of squashspecific, running shoes and minimalist footwear on the kinetics and 3-D kinematics of the lunge movement in squash players. Twelve male squash players performed lunge movements whilst wearing minimalist, running shoe and squash-specific footwear. 3-D kinematics of the lower extremities were measured using an eightcamera motion analysis system alongside kinetic and tibial acceleration information which were obtained using a force platform and an accelerometer. Differences between footwear were examined using one-way repeated measures ANOVA. The results show firstly that loading rate parameters were significantly greater in the minimalist (average = 85.36B.W/s and instantaneous = 179.09B.W/s) footwear in relation to the squashspecific (average = 38.66 B.W/s and instantaneous = 50.73B.W/s) and running footwear (average = 37.62B.W/s and instantaneous = 48.14B.W/s). In addition, tibial acceleration parameters were also significantly greater in the minimalist (peak tibial acceleration = 8.45 g and tibial acceleration slope = 422.28g/s) footwear in relation to the squash-specific (peak tibial acceleration = 4.33 g and tibial acceleration slope = 182.57g/s) and running footwear (peak tibial acceleration = 4.81 g and tibial acceleration slope = 226.72g/s). The significant increase in impact loading in the minimalist footwear therefore suggests this type of shoe may place squash players at an increased risk of developing impact-related chronic injuries.


2013 ◽  
Vol 37 (1) ◽  
pp. 7-15 ◽  
Author(s):  
Jonathan Sinclair ◽  
Paul J Taylor ◽  
Lindsay Bottoms

Cardan/Euler angles represent the most common technique for the quantification of segmental rotations. Cardan angles are influenced by their ordered sequence, and sensitive to planar-cross talk from the dominant rotation plane, which may affect the angular parameters. The International Society of Biomechanics (ISB) currently recommends a sagittal, coronal, and then transverse (XYZ) ordered sequence, although it has been proposed that when quantifying non-sagittal rotations this may not be the most appropriate technique. This study examined the influence of the helical and six available Cardan sequences on lower extremity three-dimensional (3-D) kinematics of the lead leg during the fencing lunge. Kinematic data were obtained using a 3-D motion capture system as participants completed simulated lunges. Repeated measures ANOVAs were used to compare discrete kinematic parameters, and intraclass correlations were also utilized to determine evidence of planar crosstalk. The results indicate that in all three planes of rotation, peak angle and range of motion angles using the YXZ and ZXY sequences were significantly greater than the other sequences. It was also noted that the utilization of the YXZ and ZXY sequences was associated with the strongest correlations from the sagittal plane, and the XYZ sequence was found habitually to be associated with the lowest correlations. It appears that for accurate representation of 3-D kinematics of the lead leg during the fencing lunge, the XYZ sequence is the most appropriate and as such its continued utilization is encouraged.


2017 ◽  
Vol 17 (02) ◽  
pp. 1750026 ◽  
Author(s):  
J SINCLAIR ◽  
E ROONEY ◽  
R NAEMI ◽  
S ATKINS ◽  
N CHOCKALINGAM

American football is associated with a high rate of non-contact chronic injuries. Players are able to select from both high and low cut footwear. The aim of the current investigation was to examine the influence of high and low cut American football specific footwear on tibial accelerations and three-dimensional (3D) kinematics during three sport specific movements. Twelve male American football players performed three movements, run, cut and vertical jump whilst wearing both low and high cut footwear. 3D kinematics of the lower extremities were measured using an eight-camera motion analysis system alongside tibial acceleration parameters which were obtained using a shank mounted accelerometer. Tibial acceleration and 3D kinematic differences between the different footwear were examined using either repeated measures or Friedman’s ANOVA. Tibial accelerations were significantly greater in the low cut footwear in comparison to the high cut footwear for the run and cut movements. In addition, peak ankle eversion and tibial internal rotation parameters were shown to be significantly greater in the low cut footwear in the running and cutting movement conditions. The current study indicates that the utilization of low cut American football footwear for training/performance may place American footballers at increased risk from chronic injuries.


2009 ◽  
Vol 25 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Christopher L. MacLean ◽  
Irene S. Davis ◽  
Joseph Hamill

The purpose of this study was to analyze the influence of varying running shoe midsole composition on lower extremity dynamics with and without a custom foot orthotic intervention. Three-dimensional dynamics were collected on 12 female runners who had completed 6 weeks of custom foot orthotic therapy. Participants completed running trials in 3 running shoe midsole conditions—with and without a custom foot orthotic intervention. Results from the current study revealed that only maximum rearfoot eversion velocity was influenced by the midsole durometer of the shoe. Maximum rearfoot eversion velocity was significantly decreased for the hard shoe compared with the soft shoe. However, the orthotic intervention in the footwear led to significant decreases in several dynamic variables. The results suggest that the major component influencing the rearfoot dynamics was the orthotic device and not the shoe composition. In addition, data suggest that the foot orthoses appear to compensate for the lesser shoe stability enabling it to function in a way similar to that of a shoe of greater stability.


1996 ◽  
Vol 86 (1) ◽  
pp. 4-15 ◽  
Author(s):  
BE Hirsch ◽  
JK Udupa ◽  
S Samarasekera

A new method of measuring the kinematic parameters of joints has been developed. This article describes the procedure, using tarsal joints as examples. The method uses the technique of computerized three-dimensional reconstruction from magnetic resonance images, taken at regular intervals throughout a foot's range of motion. From these reconstructions, various kinematic information, such as orientation of instantaneous axes, amounts of rotation, amounts and direction of translation, and bony contact areas, is derived. The method is noninvasive and can be applied to individual subjects or patients.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Kuang-Wei Lin ◽  
Chia-Jung Hu ◽  
Wen-Wen Yang ◽  
Li-Wei Chou ◽  
Shun-Hwa Wei ◽  
...  

Foot orthoses (FOs) are commonly used as interventions for individuals with flatfoot. Advances in technologies such as three-dimensional (3D) scanning and 3D printing have facilitated the fabrication of custom FOs. However, few studies have been conducted on the mechanical properties and biomechanical effects of 3D-printed FOs. The purposes of this study were to evaluate the mechanical properties of 3D-printed FOs and determine their biomechanical effects in individuals with flexible flatfoot. During mechanical testing, a total of 18 FO samples with three orientations (0°, 45°, and 90°) were fabricated and tested. The maximum compressive load and stiffness were calculated. During a motion capture experiment, 12 individuals with flatfoot were enrolled, and the 3D-printed FOs were used as interventions. Kinematic and kinetic data were collected during walking by using an optical motion capture system. A one-way analysis of variance was performed to compare the mechanical parameters among the three build orientations. A paired t-test was conducted to compare the biomechanical variables under two conditions: walking in standard shoes (Shoe) and walking in shoes embedded with FOs (Shoe+FO). The results indicated that the 45° build orientation produced the strongest FOs. In addition, the maximum ankle evertor and external rotator moments under the Shoe+FO condition were significantly reduced by 35% and 16%, respectively, but the maximum ankle plantar flexor moments increased by 3%, compared with the Shoe condition. No significant difference in ground reaction force was observed between the two conditions. This study demonstrated that 3D-printed FOs could alter the ankle joint moments during gait.


2009 ◽  
Vol 25 (4) ◽  
pp. 387-395 ◽  
Author(s):  
Walter L. Jenkins ◽  
Dorsey Shelton Williams ◽  
Alex Durland ◽  
Brandon Adams ◽  
Kevin O’Brien

The use of foot orthoses has been evaluated during a variety of functional activities. Twelve college-aged active females wore two types of foot orthoses and performed a vertical jump to determine the biomechanical effect of the orthoses on lower extremity transverse plane movement during landing. Data collection included three-dimensional analysis of the tibia, knee, and hip. A repeated-measures ANOVA was performed to determine the differences between no orthoses, over-the-counter, and custom-made orthoses with transverse plane motion. At the hip joint, there was significantly less internal rotation (p< .05) in the over-the-counter condition as compared with the no orthoses condition. There was significantly less tibial internal rotation (p< .05) in the custom-made condition as compared with no orthoses. Over-the-counter devices decreased transverse plane motion at the hip, whereas custom-made devices decreased transverse plane motion of the tibia.


2015 ◽  
Vol 11 (3) ◽  
pp. 191-199 ◽  
Author(s):  
J. Sinclair ◽  
S. Atkins ◽  
P.J. Taylor ◽  
H. Vincent

Netball is a physically demanding sport that is associated with a high incidence of chronic injuries. Currently there is a trend towards the utilisation of minimalist footwear in netball players as opposed to more conventional netball trainers. The current investigation aimed to examine the effects of netball specific and minimalist footwear on patellofemoral and Achilles tendon loads during netball specific motions. Fifteen female netballers performed both run and cut movements when wearing conventional netball footwear and also a minimalist trainer. Kinematics of the lower extremities were quantified using a motion analysis system alongside ground reaction force information which was obtained using a force platform. Patellofemoral force (PTF), patellofemoral pressure (PP) and Achilles tendon forces (ATF) were quantified using predictive methods and examined between footwear using repeated measures ANOVA. The results indicate that patellofemoral loads (run – PTF: netball specific = 5.56 / minimalist = 4.74 body weight (BW); – PP: netball specific = 13.17 / minimalist = 11.89 MPa; cut – PTF: netball specific = 5.65 / minimalist = 4.82 BW; – PP; netball specific = 14.05 / minimalist = 12.88 MPa) were significantly larger in the conventional footwear compared to minimalist in both movements. Achilles tendon forces (run: netball specific = 4.43 / minimalist = 5.47; cut: netball specific = 4.32 / minimalist = 5.29 BW) were however significantly larger in the minimalist compared to the conventional footwear. Taking the proposed association between knee loading and patellofemoral pathology, the risk from knee injuries in netballers may be reduced via minimalist footwear. However, taking into account the equivalent increases in Achilles tendon forces, this may increase the likelihood of overuse Achilles tendon injuries.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pieter-Jan Verhelst ◽  
H. Matthews ◽  
L. Verstraete ◽  
F. Van der Cruyssen ◽  
D. Mulier ◽  
...  

AbstractAutomatic craniomaxillofacial (CMF) three dimensional (3D) dense phenotyping promises quantification of the complete CMF shape compared to the limiting use of sparse landmarks in classical phenotyping. This study assesses the accuracy and reliability of this new approach on the human mandible. Classic and automatic phenotyping techniques were applied on 30 unaltered and 20 operated human mandibles. Seven observers indicated 26 anatomical landmarks on each mandible three times. All mandibles were subjected to three rounds of automatic phenotyping using Meshmonk. The toolbox performed non-rigid surface registration of a template mandibular mesh consisting of 17,415 quasi landmarks on each target mandible and the quasi landmarks corresponding to the 26 anatomical locations of interest were identified. Repeated-measures reliability was assessed using root mean square (RMS) distances of repeated landmark indications to their centroid. Automatic phenotyping showed very low RMS distances confirming excellent repeated-measures reliability. The average Euclidean distance between manual and corresponding automatic landmarks was 1.40 mm for the unaltered and 1.76 mm for the operated sample. Centroid sizes from the automatic and manual shape configurations were highly similar with intraclass correlation coefficients (ICC) of > 0.99. Reproducibility coefficients for centroid size were < 2 mm, accounting for < 1% of the total variability of the centroid size of the mandibles in this sample. ICC’s for the multivariate set of 325 interlandmark distances were all > 0.90 indicating again high similarity between shapes quantified by classic or automatic phenotyping. Combined, these findings established high accuracy and repeated-measures reliability of the automatic approach. 3D dense CMF phenotyping of the human mandible using the Meshmonk toolbox introduces a novel improvement in quantifying CMF shape.


2021 ◽  
Vol 45 (5) ◽  
Author(s):  
Yuri Nagayo ◽  
Toki Saito ◽  
Hiroshi Oyama

AbstractThe surgical education environment has been changing significantly due to restricted work hours, limited resources, and increasing public concern for safety and quality, leading to the evolution of simulation-based training in surgery. Of the various simulators, low-fidelity simulators are widely used to practice surgical skills such as sutures because they are portable, inexpensive, and easy to use without requiring complicated settings. However, since low-fidelity simulators do not offer any teaching information, trainees do self-practice with them, referring to textbooks or videos, which are insufficient to learn open surgical procedures. This study aimed to develop a new suture training system for open surgery that provides trainees with the three-dimensional information of exemplary procedures performed by experts and allows them to observe and imitate the procedures during self-practice. The proposed system consists of a motion capture system of surgical instruments and a three-dimensional replication system of captured procedures on the surgical field. Motion capture of surgical instruments was achieved inexpensively by using cylindrical augmented reality (AR) markers, and replication of captured procedures was realized by visualizing them three-dimensionally at the same position and orientation as captured, using an AR device. For subcuticular interrupted suture, it was confirmed that the proposed system enabled users to observe experts’ procedures from any angle and imitate them by manipulating the actual surgical instruments during self-practice. We expect that this training system will contribute to developing a novel surgical training method that enables trainees to learn surgical skills by themselves in the absence of experts.


Sign in / Sign up

Export Citation Format

Share Document