scholarly journals Effect of Climate Change on the Hydrological Character of River Maros, Hungary-Romania

2014 ◽  
Vol 7 (1-2) ◽  
pp. 49-56 ◽  
Author(s):  
György Sipos ◽  
Viktória Blanka ◽  
Gábor Mezősi ◽  
Tímea Kiss ◽  
Boudewijn van Leeuwen

Abstract It is highly probable that the precipitation and temperature changes induced by global warming projected for the 21st century will affect the regime of Carpathian Basin rivers, e.g. that of River Maros. As the river is an exceptionally important natural resource both in Hungary and Romania it is necessary to outline future processes and tendencies concerning its high and low water hydrology in order to carry out sustainable cross-border river management. The analyses were based on regional climate models (ALADIN and REMO) using the SRES A1B scenario. The modelled data had a daily temporal resolution and a 25 km spatial resolution, therefore beside catchment scale annual changes it was also possible to assess seasonal and spatial patterns for the modelled intervals (2021- 2050 and 2071-2010). Those periods of the year are studied in more detail which have a significant role in the regime of the river. The study emphasizes a decrease in winter snow reserves and an earlier start of the melting period, which suggest decreasing spring flood levels, but also a temporally more extensive flood season. Changes in early summer precipitation are ambiguous, and therefore no or only slight changes in runoff can be expected for this period. Nevertheless, it seems highly probable that during the summer and especially the early autumn period a steadily intensifying water shortage can be expected. The regime of the river is also greatly affected by human structures (dams and reservoirs) which make future, more detailed modelling a challenge.

2019 ◽  
Vol 40 (4) ◽  
pp. 2270-2284 ◽  
Author(s):  
Changyong Park ◽  
Dong‐Hyun Cha ◽  
Gayoung Kim ◽  
Gil Lee ◽  
Dong‐Kyou Lee ◽  
...  

2007 ◽  
Vol 4 (5) ◽  
pp. 2975-2996 ◽  
Author(s):  
H. Laudon

Abstract. For the prediction of episodic acidification large uncertainties are connected to climatic variability and its effect on drought conditions and sea-salt episodes. In this study data on 342 hydrological episodes in 25 Swedish streams, sampled over 10 years, have been analyzed using a recently developed episode model. The results demonstrate that drought is the most important factor modulating the magnitude of the anthropogenic influence on pH and ANC during episodes. These modulating effects are especially pronounced in southern and central Sweden, where the historically high acid deposition has resulted in significant S pools in catchment soils. The results also suggest that the effects of episodic acidification are becoming less severe in many streams, but this amelioration is less clear in coastal streams subject to high levels of sea-salt deposition. Concurrently with the amelioration of the effects of episodic acidification, regional climate models predict that temperatures will increase in Sweden during the coming decades, accompanied by reductions in summer precipitation and more frequent storms during fall and winter in large areas of the country. If these predictions are realized delays in streams' recovery from episodic acidification events can be expected.


2015 ◽  
Vol 12 (3) ◽  
pp. 2657-2706 ◽  
Author(s):  
T. Olsson ◽  
J. Jakkila ◽  
N. Veijalainen ◽  
L. Backman ◽  
J. Kaurola ◽  
...  

Abstract. Assessment of climate change impacts on climate and hydrology on catchment scale requires reliable information about the average values and climate fluctuations of the past, present and future. Regional Climate Models (RCMs) used in impact studies often produce biased time series of meteorological variables. In this study bias correction of RCM temperature and precipitation for Finland is carried out using different versions of distribution based scaling (DBS) method. The DBS adjusted RCM data is used as input of a hydrological model to simulate changes in discharges in four study catchments in different parts of Finland. The annual mean discharges and seasonal variation simulated with the DBS adjusted temperature and precipitation data are sufficiently close to observed discharges in the control period (1961–2000) and produce more realistic projections for mean annual and seasonal changes in discharges than the uncorrected RCM data. Furthermore, with most scenarios the DBS method used preserves the temperature and precipitation trends of the uncorrected RCM data during 1961–2100. However, if the biases in the mean or the SD of the uncorrected temperatures are large, significant biases after DBS adjustment may remain or temperature trends may change, increasing the uncertainty of climate change projections. The DBS method influences especially the projected seasonal changes in discharges and the use of uncorrected data can produce unrealistic seasonal discharges and changes. The projected changes in annual mean discharges are moderate or small, but seasonal distribution of discharges will change significantly.


2008 ◽  
Vol 12 (2) ◽  
pp. 363-370 ◽  
Author(s):  
H. Laudon

Abstract. For the prediction of episodic acidification large uncertainties are connected to climatic variability and its effect on drought conditions and sea-salt episodes. In this study data on 342 hydrological episodes in 25 Swedish streams, sampled over 10 years, have been analyzed using a recently developed episode model. The results demonstrate that drought is the most important factor modulating the magnitude of the anthropogenic influence on pH and ANC during episodes. These modulating effects are especially pronounced in southern and central Sweden, where the historically high acid deposition has resulted in significant S pools in catchment soils. The results also suggest that the effects of episodic acidification are becoming less severe in many streams, but this amelioration is less clear in coastal streams subject to high levels of sea-salt deposition. Concurrently with the amelioration of the effects of episodic acidification, regional climate models predict that temperatures will increase in Sweden during the coming decades, accompanied by reductions in summer precipitation and more frequent storms during fall and winter in large areas of the country. If these predictions are realized delays in streams' recovery from episodic acidification events can be expected.


2013 ◽  
Vol 26 (21) ◽  
pp. 8690-8697 ◽  
Author(s):  
Michael A. Alexander ◽  
James D. Scott ◽  
Kelly Mahoney ◽  
Joseph Barsugli

Abstract Precipitation changes between 32-yr periods in the late twentieth and mid-twenty-first centuries are investigated using regional climate model simulations provided by the North American Regional Climate Change Assessment Program (NARCCAP). The simulations generally indicate drier summers in the future over most of Colorado and the border regions of the adjoining states. The decrease in precipitation occurs despite an increase in the surface specific humidity. The domain-averaged decrease in daily summer precipitation occurs in all of the models from the 50th through the 95th percentile, but without a clear agreement on the sign of change for the most extreme (top 1% of) events.


2018 ◽  
Vol 19 (1) ◽  
pp. 323-335
Author(s):  
Adam Beran ◽  
Martin Hanel ◽  
Magdalena Nesládková ◽  
Adam Vizina ◽  
Petr Vyskoč ◽  
...  

Abstract Several basins in Western Bohemia are regularly confronted with water scarcity problems during dry periods that have far-reaching impacts on stream ecology and the availability of drinking water for users. This paper presents a hydrological balance assessment of catchments in Western Bohemia for present and future conditions together with possible directions for climate change adaptation at the local scale. Assessment of climate change impacts on hydrological balance components using an ensemble of regional climate models revealed an increase in air temperature for all months during the year leading to an increase in evaporation. Along with changes in precipitation distribution during the year (increasing winter precipitation and decreasing summer precipitation), groundwater recharge and groundwater storage in general both decrease. Adaptation measures such as water transfers and the construction of water reservoirs are assessed with respect to the goal of increasing water availability in the Western Bohemia region during dry periods.


2015 ◽  
Vol 19 (7) ◽  
pp. 3217-3238 ◽  
Author(s):  
T. Olsson ◽  
J. Jakkila ◽  
N. Veijalainen ◽  
L. Backman ◽  
J. Kaurola ◽  
...  

Abstract. Assessment of climate change impacts on climate and hydrology on catchment scale requires reliable information about the average values and climate fluctuations of the past, present and future. Regional climate models (RCMs) used in impact studies often produce biased time series of meteorological variables. In this study bias correction (BC) of RCM temperature and precipitation for Finland is carried out using different versions of the distribution based scaling (DBS) method. The DBS-adjusted RCM data are used as input of a hydrological model to simulate changes in discharges of four study catchments in different parts of Finland. The annual mean discharges and seasonal variation simulated with the DBS-adjusted temperature and precipitation data are sufficiently close to observed discharges in the control period 1961–2000 and produce more realistic projections for mean annual and seasonal changes in discharges than the uncorrected RCM data. Furthermore, with most scenarios the DBS method used preserves the temperature and precipitation trends of the uncorrected RCM data during 1961–2100. However, if the biases in the mean or the standard deviation of the uncorrected temperatures are large, significant biases after DBS adjustment may remain or temperature trends may change, increasing the uncertainty of climate change projections. The DBS method influences especially the projected seasonal changes in discharges and the use of uncorrected data can produce unrealistic seasonal discharges and changes. The projected changes in annual mean discharges are moderate or small, but seasonal distribution of discharges will change significantly.


2012 ◽  
Vol 13 (6) ◽  
pp. 1817-1835 ◽  
Author(s):  
S. H. Rasmussen ◽  
J. H. Christensen ◽  
M. Drews ◽  
D. J. Gochis ◽  
J. C. Refsgaard

Abstract Precipitation simulated by regional climate models (RCMs) is generally biased with respect to observations, especially at the local scale of a few tens of kilometers. This study investigates how well two different RCMs are able to reproduce the spatial correlation patterns of observed summer precipitation for the central United States. On local scales, gridded precipitation observations and simulated precipitation are compared for the period of the 1987 First International Satellite Land Surface Climatological Project Field Experiment (FIFE) campaign. The results show that spatial correlation length scales on the order of 130 km are found in both observed data and RCM simulations. When simulations and observations are aggregated to different grid sizes, the pattern correlation significantly decreases when the aggregation length is less than roughly 100 km. Furthermore, the intermodel standard deviation between simulations with different domains or resolutions increases for aggregation lengths below ~130 km. Below this length scale there is a high level of randomness in the precise location of precipitation events. Conversely, spatial correlation values increase above this length scale, reflecting larger predictive certainty of the RCMs at larger scales. The findings on aggregated grid scales are shown to be largely independent of the underlying RCMs grid resolutions but not of the overall size of RCM domain. With regard to hydrological modeling applications, these findings indicate that precipitation extracted from the present RCM simulations at a catchment scale below the intermodel standard deviation length cannot be expected to accurately match observations.


Sign in / Sign up

Export Citation Format

Share Document