Evaluation of summer precipitation over Far East Asia and South Korea simulated by multiple regional climate models

2019 ◽  
Vol 40 (4) ◽  
pp. 2270-2284 ◽  
Author(s):  
Changyong Park ◽  
Dong‐Hyun Cha ◽  
Gayoung Kim ◽  
Gil Lee ◽  
Dong‐Kyou Lee ◽  
...  
2015 ◽  
Vol 46 (7-8) ◽  
pp. 2469-2486 ◽  
Author(s):  
Changyong Park ◽  
Seung-Ki Min ◽  
Donghyun Lee ◽  
Dong-Hyun Cha ◽  
Myoung-Seok Suh ◽  
...  

2007 ◽  
Vol 24 (4) ◽  
pp. 539-554 ◽  
Author(s):  
Dong-Kyou Lee ◽  
William J. Gutowski ◽  
Hyun-Suk Kang ◽  
Chun-Ji Kim

2007 ◽  
Vol 4 (5) ◽  
pp. 2975-2996 ◽  
Author(s):  
H. Laudon

Abstract. For the prediction of episodic acidification large uncertainties are connected to climatic variability and its effect on drought conditions and sea-salt episodes. In this study data on 342 hydrological episodes in 25 Swedish streams, sampled over 10 years, have been analyzed using a recently developed episode model. The results demonstrate that drought is the most important factor modulating the magnitude of the anthropogenic influence on pH and ANC during episodes. These modulating effects are especially pronounced in southern and central Sweden, where the historically high acid deposition has resulted in significant S pools in catchment soils. The results also suggest that the effects of episodic acidification are becoming less severe in many streams, but this amelioration is less clear in coastal streams subject to high levels of sea-salt deposition. Concurrently with the amelioration of the effects of episodic acidification, regional climate models predict that temperatures will increase in Sweden during the coming decades, accompanied by reductions in summer precipitation and more frequent storms during fall and winter in large areas of the country. If these predictions are realized delays in streams' recovery from episodic acidification events can be expected.


2014 ◽  
Vol 7 (1-2) ◽  
pp. 49-56 ◽  
Author(s):  
György Sipos ◽  
Viktória Blanka ◽  
Gábor Mezősi ◽  
Tímea Kiss ◽  
Boudewijn van Leeuwen

Abstract It is highly probable that the precipitation and temperature changes induced by global warming projected for the 21st century will affect the regime of Carpathian Basin rivers, e.g. that of River Maros. As the river is an exceptionally important natural resource both in Hungary and Romania it is necessary to outline future processes and tendencies concerning its high and low water hydrology in order to carry out sustainable cross-border river management. The analyses were based on regional climate models (ALADIN and REMO) using the SRES A1B scenario. The modelled data had a daily temporal resolution and a 25 km spatial resolution, therefore beside catchment scale annual changes it was also possible to assess seasonal and spatial patterns for the modelled intervals (2021- 2050 and 2071-2010). Those periods of the year are studied in more detail which have a significant role in the regime of the river. The study emphasizes a decrease in winter snow reserves and an earlier start of the melting period, which suggest decreasing spring flood levels, but also a temporally more extensive flood season. Changes in early summer precipitation are ambiguous, and therefore no or only slight changes in runoff can be expected for this period. Nevertheless, it seems highly probable that during the summer and especially the early autumn period a steadily intensifying water shortage can be expected. The regime of the river is also greatly affected by human structures (dams and reservoirs) which make future, more detailed modelling a challenge.


2008 ◽  
Vol 12 (2) ◽  
pp. 363-370 ◽  
Author(s):  
H. Laudon

Abstract. For the prediction of episodic acidification large uncertainties are connected to climatic variability and its effect on drought conditions and sea-salt episodes. In this study data on 342 hydrological episodes in 25 Swedish streams, sampled over 10 years, have been analyzed using a recently developed episode model. The results demonstrate that drought is the most important factor modulating the magnitude of the anthropogenic influence on pH and ANC during episodes. These modulating effects are especially pronounced in southern and central Sweden, where the historically high acid deposition has resulted in significant S pools in catchment soils. The results also suggest that the effects of episodic acidification are becoming less severe in many streams, but this amelioration is less clear in coastal streams subject to high levels of sea-salt deposition. Concurrently with the amelioration of the effects of episodic acidification, regional climate models predict that temperatures will increase in Sweden during the coming decades, accompanied by reductions in summer precipitation and more frequent storms during fall and winter in large areas of the country. If these predictions are realized delays in streams' recovery from episodic acidification events can be expected.


2020 ◽  
Author(s):  
Seok-Woo Shin ◽  
Dong-Hyun Cha ◽  
Taehyung Kim ◽  
Gayoung Kim ◽  
Changyoung Park ◽  
...  

<p>Extreme temperature can have a devastating impact on the ecological environment (i.e., human health and crops) and the socioeconomic system. To adapt to and cope with the rapidly changing climate, it is essential to understand the present climate and to estimate the future change in terms of temperature. In this study, we evaluate the characteristics of near-surface air temperature (SAT) simulated by two regional climate models (i.e., MM5 and HadGEM3-RA) over East Asia, focusing on the mean and extreme values. To analyze extreme climate, we used the indices for daily maximum (Tmax) and minimum (Tmin) temperatures among the developed Expert Team on Climate Change Detection and Indices (ETCCDI) indices. In the results of the CORDEX-East Asia phase Ⅰ, the mean and extreme values of SAT for DJF (JJA) tend to be colder (warmer) than observation data over the East Asian region. In those of CORDEX-East Asia phase Ⅱ, the mean and extreme values of SAT for DJF and JJA have warmer than those of the CORDEX-East Asia phase Ⅰ except for those of HadGEM3-RA for DJF. Furthermore, the Extreme Temperature Range (ETR, maximum value of Tmax - minimum value of Tmin) of CORDEX-East Asia phase Ⅰ data, which are significantly different from those of observation data, are reduced in that of CORDEX-East Asia phase Ⅱ. Consequently, the high-resolution regional climate models play a role in the improvement of the cold bias having the relatively low-resolution ones. To understand the reasons for the improved and weak points of regional climate models, we investigated the atmospheric field (i.e., flow, air mass, precipitation, and radiation) influencing near-surface air temperature. Model performances for SAT over East Asia were influenced by the expansion of the western North Pacific subtropical high and the location of convective precipitation in JJA and by the contraction of the Siberian high, the spatial distribution of snowfall and associated upwelling longwave radiation in DJF.</p>


2013 ◽  
Vol 26 (21) ◽  
pp. 8690-8697 ◽  
Author(s):  
Michael A. Alexander ◽  
James D. Scott ◽  
Kelly Mahoney ◽  
Joseph Barsugli

Abstract Precipitation changes between 32-yr periods in the late twentieth and mid-twenty-first centuries are investigated using regional climate model simulations provided by the North American Regional Climate Change Assessment Program (NARCCAP). The simulations generally indicate drier summers in the future over most of Colorado and the border regions of the adjoining states. The decrease in precipitation occurs despite an increase in the surface specific humidity. The domain-averaged decrease in daily summer precipitation occurs in all of the models from the 50th through the 95th percentile, but without a clear agreement on the sign of change for the most extreme (top 1% of) events.


2018 ◽  
Vol 19 (1) ◽  
pp. 323-335
Author(s):  
Adam Beran ◽  
Martin Hanel ◽  
Magdalena Nesládková ◽  
Adam Vizina ◽  
Petr Vyskoč ◽  
...  

Abstract Several basins in Western Bohemia are regularly confronted with water scarcity problems during dry periods that have far-reaching impacts on stream ecology and the availability of drinking water for users. This paper presents a hydrological balance assessment of catchments in Western Bohemia for present and future conditions together with possible directions for climate change adaptation at the local scale. Assessment of climate change impacts on hydrological balance components using an ensemble of regional climate models revealed an increase in air temperature for all months during the year leading to an increase in evaporation. Along with changes in precipitation distribution during the year (increasing winter precipitation and decreasing summer precipitation), groundwater recharge and groundwater storage in general both decrease. Adaptation measures such as water transfers and the construction of water reservoirs are assessed with respect to the goal of increasing water availability in the Western Bohemia region during dry periods.


Sign in / Sign up

Export Citation Format

Share Document