scholarly journals Molecular Detection of Prostate Cancer by Methylation-Specific Polymerase Chain Reaction from Urine Specimens

2013 ◽  
Vol 32 (3) ◽  
pp. 233-237 ◽  
Author(s):  
Raluca Dumache ◽  
Sorina Popescu ◽  
Radu Minciu ◽  
Serban Negru ◽  
Maria Puiu

Summary Background: Prostate cancer (PCa) represents the second most prevalent malignancy among males, which is characterized by a high mortality rate. The aim of our study was to evaluate the methylation status of glutathione S-transferase P1 (GSTP1) in urine specimens from males with PCa and benign prostatic hyperplasia (BPH) and its usefulness in distinguishing between males with PCa and BPH by noninvasive methods. Methods: Voided urine specimens were collected from 65 patients with PCa and 45 patients with BPH. Genomic DNA was isolated and subjected to bisulfite modification. Methylation status of the GSTP1 gene was determined by conventional methylation-specific polymerase chain reaction (MSP) analysis. Results: Promoter hypermethylation of the GSTP1 gene in voided urine samples was found in 63 of 65 (97%) males with PCa and in 5 of 45 (11%) males with BPH. The sensitivity and specificity of GSTP1 in discriminating between PCa and BPH males were 98% and 89%, respectively. Conclusions: Gene analysis of GSTP1 using conventional MSP in urine specimens can be used as a noninvasive biomarker to distinguish between men with malignant and benign prostatic diseases.

2005 ◽  
Vol 23 (27) ◽  
pp. 6569-6575 ◽  
Author(s):  
Mohammad Obaidul Hoque ◽  
Ozlem Topaloglu ◽  
Shahnaz Begum ◽  
Rui Henrique ◽  
Eli Rosenbaum ◽  
...  

Purpose Aberrant promoter hypermethylation of several known or putative tumor suppressor genes occurs frequently during the pathogenesis of prostate cancers and is a promising marker for cancer detection. We sought to develop a test for prostate cancer based on a quantitative methylation-specific polymerase chain reaction (QMSP) of multiple genes in urine sediment DNA. Patients and Methods We tested urine sediment DNA for aberrant methylation of nine gene promoters (p16INK4a, p14ARF, MGMT, GSTP1, RARβ2, CDH1 [E-cadherin], TIMP3, Rassf1A, and APC) from 52 patients with prostate cancer and 21 matched primary tumors by quantitative fluorogenic real-time polymerase chain reaction. We also analyzed urine sediments from 91 age-matched individuals without any history of genitourinary malignancy as controls. Results Promoter hypermethylation of at least one of the genes studied was detected in urine samples from all 52 prostate cancer patients. Urine samples from the 91 controls without evidence of genitourinary cancer revealed no methylation of the p16, ARF, MGMT, and GSTP1 gene promoters, whereas methylation of RARβ2, TIMP3, CDH1, Rassf1A, and APC was detected at low levels. Conclusion Overall, methylation found in urine samples matched the methylation status in the primary tumor. A combination of only four genes (p16, ARF, MGMT, and GSTP1) would theoretically allow us to detect 87% of prostate cancers with 100% specificity. Our data support further development of the noninvasive QMSP assay in urine DNA for early detection and surveillance of prostate cancer.


2007 ◽  
Vol 131 (6) ◽  
pp. 936-941
Author(s):  
A. Mazin Safar ◽  
Horace Spencer ◽  
Xiaobo Su ◽  
Craig A. Cooney ◽  
Ali Shwaiki ◽  
...  

Abstract Context.— Even among cases of non–small cell lung cancer (NSCLC) in the most favorable stage (IA), the disease-specific mortality is 25% or greater. One plausible explanation implicates the simplistic standard pathologic procedures used to designate lymph node involvement. A more sensitive assessment of the nodal status may improve staging. Objective.—To determine the prognostic impact of detecting an abnormal molecular event (promoter hypermethylation in a set of relevant genes) in histologically uninvolved lymph nodes in resected NSCLC. Design.—In this retrospective analysis of archived material, we examined DNA extracted from lymph nodes of stage I NSCLC (n = 180). Patients underwent surgery between 1991 and 1995 in a single institution. Methylation-specific polymerase chain reaction was used to detect promoter hypermethylation in a panel of 8 genes. Survival data were extracted from the computerized database at the Tumor Registry. Results.—Evidence of promoter hypermethylation in at least 1 gene was detected in 67% of these N0 nodes. The most commonly hypermethylated gene was E-cadherin (53%). The hypermethylation frequency for the remaining genes were as follows: APC, 5%; p16, 9%; MGMT, 11%; hMLH1, 15%; RASSF1A, 4%; DAP kinase, 9%; and ATM, 19%. The presence of promoter hypermethylation in 2 or more genes did not influence the overall, median, or 5-year survival rates. Conclusions.—Identifying promoter hypermethylation (in our panel) in N0 lymph nodes in stage I NSCLC cannot be recommended for clinical decision making. Molecular abnormalities, including those found in cancer by qualitative methylation-specific polymerase chain reaction, are not synonymous with established, histologically detectable metastasis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shichang Zhang ◽  
Li Xu ◽  
Mengyao Yu ◽  
Jiexin Zhang

Abstract Given the role of the deleted in azoospermia gene in male infertility, whether the somatic deleted in azoospermia methylation status is associated with idiopathic asthenospermia should be determined. To investigate the methylation levels of the deleted in azoospermia promoter in peripheral white blood cells from idiopathic asthenospermia patients relative to those in normozoospermia controls, 61 ethylene diamine tetraacetic acid anticoagulant blood samples were drawn from all participants for DNA isolation. The deleted in azoospermia promoter methylation ratio was detected by MassARRAY-based methylation quantification and confirmed by quantitative methylation-specific polymerase chain reaction. A MassARRAY-based methylation analysis showed that the deleted in azoospermia 3 promoter (0 to − 2 kbp) was significantly hypomethylated in peripheral white blood cells from idiopathic asthenospermia males, specifically one CpG site (− 246 to − 247). Quantitative methylation-specific polymerase chain reaction data further confirmed that the methylation level of the deleted in azoospermia 3 promoter region in idiopathic asthenospermia patients was significantly lower than that in normozoospermia males. The area under the receiver operating characteristic curve determined by quantitative methylation-specific polymerase chain reaction was 0.737 (95% confidence interval: 0.552 to 0.924), with a sensitivity of 53.9% and a specificity of 88.2% at a cut-off level of 74.7%. Therefore, our results suggested that methylation ratio detection of the deleted in azoospermia 3 promoter region by real-time polymerase chain reaction assay is a promising and feasible tool for liquid biopsy in the clinical laboratories. The methylation status of other reported infertility-related genes should also be investigated in peripheral white blood cells.


2006 ◽  
Vol 175 (4S) ◽  
pp. 485-486
Author(s):  
Sabarinath B. Nair ◽  
Christodoulos Pipinikas ◽  
Roger Kirby ◽  
Nick Carter ◽  
Christiane Fenske

2020 ◽  
Vol 48 (1) ◽  
pp. 62-72
Author(s):  
E. A. Ershova

Сalanoid copepods of the genus Pseudocalanus play an important role in the plankton communities of the Arctic and boreal seas, often dominating in numbers and constituting a significant proportion of the biomass of zooplankton. Despite their high presence and significance in the shelf plankton communities, species-specific studies of the biology of these are significantly hampered by extremely small morphological differences between them, especially at the juvenile stages, at which they are virtually indistinguishable. In this paper, we describe a new, routine and low-cost molecular method for identifying all Pseudocalanus species found in the Atlantic sector of the Arctic: the Arctic P. acuspes, P. minutus and the boreal P. moultoni and P. elongatus, and apply it to describe the relative distribution of these species in four locations of the Arctic and sub-Arctic. With this method, species-specific polymerase chain reaction (ssPCR), mass identification of individuals of any developmental stage, including nauplii, is possible. This method can serve as an excellent tool for studying the species-specific biology of this group, describing their life cycles, as well as monitoring changes in Arctic marine ecosystems under the influence of changing climate.


Sign in / Sign up

Export Citation Format

Share Document