scholarly journals Effect of negative energy balance on plasma metabolites, minerals, hormones, cytokines and ovarian follicular growth rate in Holstein dairy cows

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yuxi Song ◽  
Zhijie Wang ◽  
Chang Zhao ◽  
Yunlong Bai ◽  
Cheng Xia ◽  
...  

Abstract Introduction The aim of this study was to evaluate the effect of negative energy balance (NEB) on the final growth of the dominant ovarian follicle in Holstein cows. Material and Methods Cows at 14 to 21 d postpartum from an intensive dairy farm were randomly selected and allocated into a positive energy balance group (PEB, with β-hydroxybutyric acid (BHBA) level < 1.2 mmol/L, n = 15) and an NEB group (BHBA > 1.2 mmol/L, n = 15). Plasma samples were collected at 21, 50 and 55 d postpartum to assess the concentrations of energy metabolites, minerals, hormones and cytokines. Ovaries were examined by transrectal ultrasound on days 50 and 55 (120 hours later) to evaluate the diameter of the largest follicle. Results Compared with PEB cows, there were a more severe body condition loss and a lower milk yield in NEB cows (P < 0.05) and these had greater concentrations of plasma BHBA, non-esterified fatty acids, triglycerides, urea nitrogen, growth hormone, interleukin 6, and fibroblast growth factor 21 and lesser concentrations of plasma glucose, total cholesterol, insulin, insulin-like growth factor 1, insulin-like growth factor binding protein 3, leptin, brain-derived neurotrophic factor and angiopoietin-like protein 8 on d 21 (P < 0.05), while plasma minerals were not affected by energy status (P > 0.05). These changes persisted until the end of the study period (50–55 days postpartum) resulting in a lower follicular growth rate for cows in the NEB than the PEB group. Conclusion These observations indicate that follicular growth rate is associated with measurable changes in energy metabolite, hormone and cytokine concentrations caused by early postpartum NEB.

1998 ◽  
Vol 67 (2) ◽  
pp. 339-347 ◽  
Author(s):  
W. D. Kraetz ◽  
C. Zimmer ◽  
D. Schneider ◽  
D. Schams

AbstractThe aim of the study was to investigate the influence of different energy levels during a 4-week lactation on the regulation of the metabolic hormones somatotropin (GH), prolactin, insulin and insulin-like growth factor-1 (IGF-1). A total of 21 crossbred sows (German Landrace × Duroc) were cannulated for daily blood collection from 3 weeks before parturition until 2 weeks after weaning and for weekly window sampling (every 20 min for 10 h). Nineteen sows were given 2·8 kg food during late gestation, 5·0 kg food during lactation and 2·8 kg food per day after weaning and two sows were given food at a restricted level (3·0 kg) during lactation. In the 19 sows, the different energy balance was induced by allocation of different numbers of sucking piglets to the respective sows. One group of sows suckled seven piglets and served as a control (C; no. = 7) and another group suckled 10 to 12 piglets and was energy deficient (D). After the study, the sows of the deficient group were, based on their litter weight gain from parturition until weaning, divided into low (D-L; no. = 6) or high (D-H; no. = 6) litter weight gain. The D-H sows lost more body weight during lactation than C and had lower glucose and higher nonesterified fatty acids levels before morning feeding. GH and prolactin increased around parturition and their secretory profiles during lactation were altered by the frequent sucking stimulus, whereby the access of the piglets to their dams was not controlled. During lactation, GH and prolactin were highest in D-H sows. The results suggest a possible role of not only GH but also of prolactin in nutrient partitioning to the mammary gland just before the start of lactation and for minimizing the adverse effects of a negative energy balance. Furthermore, insulin and IGF-1 increased around parturition in all sows. Insulin was higher before and after feeding and the highest levels were found in C and D-L sows. The regulation patterns of insulin and IGF-1 indicate that the lactating sow is able to mobilize enough energy from body reserves to prevent metabolic disorders, even during a period with deficient energy supply. This is contrary to the regulation in the dairy cow, where the negative energy balance is coupled with a severe glucose deficit during phases of high milk yield, which causes decreased levels of insulin and IGF-1. In the sow, the glucose intake with the food meets the glucose requirement for metabolic pathways also during a deficient lactational energy intake. Therefore, in sows IGF-1 can be stimulated by increased GH levels via the GH receptor in the liver during a state of nutritional energy deficiency and the fact that sows can compensate a deficient metabolic state much better than cows is also reflected in the respective endocrinology.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11174
Author(s):  
Mette S. Nielsen ◽  
Susanna Søberg ◽  
Julie B. Schmidt ◽  
Anne Chenchar ◽  
Anders Sjödin ◽  
...  

Background Despite a consistent link between obesity and increased circulating levels of fibroblast growth factor-21 (FGF21), the effect of weight-loss interventions on FGF21 is not clear. We aimed to determine the short- and long-term effects of Roux-en-Y gastric bypass (RYGB) on intact plasma FGF21 levels and to test the hypothesis that RYGB, but not diet-induced weight loss, increases fasting and postprandial responses of FGF21. Method Twenty-eight participants with obesity followed a low-calorie diet for 11 weeks. The 28 participants were randomized to undergo RYGB surgery at week 8 (RYGB group, n = 14), or to a control group scheduled for surgery at week 12 (n = 14). Fasting levels of intact, biologically active FGF21 (amino acids 1-181) and its postprandial responses to a mixed meal were assessed at week 7 and 11, and 78 weeks (18 months) after RYGB. Results At week 11 (3 weeks after RYGB), postprandial responses of intact FGF21 were enhanced in participants undergoing surgery at week 8 (change from week 7 to 11: P = 0.02), whereas no change was found in non-operated control participants in similar negative energy balance (change from week 7 to 11: P = 0.81). However, no between-group difference was found (P = 0.27 for the group-week-time interaction). Fasting, as well as postprandial responses in intact FGF21, were unchanged 18 months after RYGB when both the RYGB and control group were collapsed together (change from week 7 to 78 weeks after RYGB: P = 0.17). Conclusion Postprandial intact FGF21 levels were enhanced acutely after RYGB whereas no signs of sustained changes were found 18 months after surgery. When comparing the acute effect of RYGB with controls in similar negative energy balance, we failed to detect any significant differences between groups, probably due to the small sample size and large inter-individual variations, especially in response to surgery.


2016 ◽  
Vol 2016 ◽  
pp. 1-5
Author(s):  
Matthew W. Brunke ◽  
Christopher W. Frye ◽  
Corri B. Levine ◽  
Cristina Hansen ◽  
Joseph J. Wakshlag

The objective of this study was to investigate the effects of running a 1000-mile (1600 km) endurance sled dog race on serum insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding proteins 1 and 3 (IGFBP-1 and IGFBP-3). Serum was examined from 12 sled dogs prior to the race, at midrace (approximately 690 km), and again at the finish. IGF-1, IGFBP-1, and IGFBP-3 were assessed using radioimmunoassay or enzyme linked immune-absorbance assays. Mean prerace concentrations were significantly higher than midrace and end-race concentrations at 215.93 ± 80.51 ng/mL, 54.29 ± 25.45 ng/mL, and 55.53 ± 28.25 ng/mL, respectively (P<0.001). Mean IGFBP-1 concentrations were not different across these time periods at 24.1 ± 15.8 ng/mL, 25.7 ± 14.0 ng/mL, and 26.6 ± 17.6 ng/mL, respectively. IGFBP-3 concentrations showed a modest significant decrease across time periods at 3,067 ± 2,792 ng/mL, 2,626 ± 2,310 ng/mL, and 2,331 ± 2,301 ng/mL, respectively (P<0.01). Endurance sled dogs show a precipitous drop in serum IGF-1 concentrations. These differences may be related to fuel utilization and excessive negative energy balance associated with the loss of body condition during racing. The relative stability of IGFBP-1 and IGFBP-3 suggests that IGF-1 anabolic signaling is diminished during ultramarathon racing. Further studies comparing the influence of time and duration of exercise versus negative energy balance on serum IGF-1 status are warranted to better understand exercise versus negative energy balance differences.


2019 ◽  
Vol 74 (10) ◽  
pp. 6133-2019
Author(s):  
YUANYUAN CHEN ◽  
ZHIHAO DONG ◽  
RUIRUI LI ◽  
CHUANG XU

Negative energy balance (NEB) is a common pathological cause of ketosis. As the major organs of lipid metabolism, the liver and fat tissue take part in regulating lipid oxidative capacity and energy demands, which is also a key metabolic pathway that regulates NEB development during the perinatal period. Fibroblast Growth Factor 21 (FGF21) is a novel metabolic regulator involved in the control of fatty acid oxidation and lipid metabolism during a prolonged negative energy balance. Our study determined a correlation between serum FGF21 and β-hydroxybutyric acid (BHBA) levels in dairy cows with ketosis. We used sixty cows with low milk yield, abnormal glucose metabolism, and ketosis. Serum FGF21 and BHBA levels were measured using commercial kits. Serum FGF21 increased with increasing BHBA levels up to 1.6 mmol/L. At BHBA levels > 1.6 mmol/L, FGF21 decreased. Serum FGF21 levels were positively associated with BHBA levels, particularly in dairy cows with subclinical ketosis (r = 0.647, P < 0.01). At BHBA levels between 1.2 mmol/L and 1.6 mmol/L, FGF21 was more closely correlated with BHBA than with other metabolic parameters. At BHBA levels > 1.6 mmol/L, the association between FGF21 and BHBA was not significant. In conclusion, our results show that FGF21 was closely related with SK in cows. FGF21 may be a promising regulator in the prevention of subclinical ketosis.


2001 ◽  
Vol 26 (1) ◽  
pp. 223-236 ◽  
Author(s):  
M. C. Lucy ◽  
B. A. Crooker

AbstractSelection of dairy cattle for increased milk production has decreased some indices of reproductive efficiency. For example, days open are increased by one day for every 100 kg of increased milk yield per lactation. Some of the change in days open can be explained by delayed onset of oestrous cyclicity and lower conception rate to artificial insemination in cows with greater milk production. Despite these negative associations between milk production and reproduction, reproduction in herds of high producing dairy cattle is not necessarily compromised relative to reproduction in herds of low producing dairy cattle. This is because there is a large environmental effect on dairy reproduction. High producing herds generally have better management and better oestrous detection. Therefore, high producing dairy herds may partially overcome the antagonistic relationship between milk production and reproduction. Physiological mechanisms that lead to poorer reproduction in high producing cows are partially defined. Negative energy balance that occurs in high producing dairy cows can be associated with a delay in the initiation of ovarian cycles and the interval to first breeding. Many of the effects of negative energy balance on postpartum reproduction can be explained by decreased serum luteinizing hormone (LH) that is associated with negative energy balance. Serum LH increases as cows move toward positive energy balance and greater LH stimulates growth and ovulation of ovarian follicles. We have initiated studies to address physiological differences in high and low index dairy cows. The reproductive endocrinology of cows from a control line (5,900 kg milk/lactation) and a select line (10,900 kg milk/lactation) of dairy cows at the University of Minnesota was studied over a two-year period. Cows in Year 1 were similar for serum concentrations of LH, follicle stimulating hormone (FSH), and oestradiol (preovulatory period). In both years, serum concentrations of progesterone during luteal phases, however, were decreased in select cows. The Year 2 cows also had a delay in the return to oestrous cyclicity that was associated with reduced LH. The possibility that decreased progesterone causes infertility in dairy cows will require further study. Collectively, these data suggest that changes in blood progesterone concentrations may explain, partially, lower fertility in high index dairy cows.


2017 ◽  
Vol 86 (1) ◽  
pp. 59-65
Author(s):  
Ziling Fan ◽  
Shi Shu ◽  
Chuchu Xu ◽  
Changsheng Li ◽  
Xinhuan Xiao ◽  
...  

The aim of this investigation was to determine the relationship between postpartum anoestrus and negative energy balance in an intensive dairy farm from the Heilongjiang Province, China. At 14 to 21 d after parturition, 100 cows were randomly selected and their plasma indices, including β-hydroxybutyric acid, non-esterified fatty acid, and glucose were measured. Cows were assigned to a positive energy balance group (n = 37) and a negative energy balance group (n = 36) based on their β-hydroxybutyric acid concentrations (> 1.20 mmol/l). The two groups of cows were examined by B-mode ultrasonography and rectal examination from 60 to 90 d after parturition to identify the ovarian status of oestrous and anoestrous animals. The incidences of negative energy balance and positive energy balance were 49 and 57%, respectively, from14 to 21 d after parturition. From 60 to 90 d after parturition, 94.4% of the negative energy balance group were in anoestrus and 5.6% were in oestrus, while 62.2% of the positive energy balance group were in anoestrus and 37.8% were in oestrus. Furthermore, the proportion of inactive ovaries in the negative energy balance group was 61.8%. In conclusion, the negative energy balance is an important factor causing inactive ovaries in high-yielding dairy cows.


2021 ◽  
Vol 73 (4) ◽  
pp. 929-937
Author(s):  
F. Zhang ◽  
Z. Wang ◽  
C. Zhao ◽  
Y. Bai ◽  
D. Wang ◽  
...  

ABSTRACT The objective of the present study was to investigate the different plasma metabolites between anestrus and estrus postpartum dairy cows and to provide a theoretical basis for prevention of anestrus in dairy farm cows. In the experiment, one hundred and sixty-seven Holstein dairy cows were selected with similar age and parity. According to the concentration of β-hydroxybutyric acid, non-esterified fatty acids and glucose in plasma during 14 to 21 days in milk, all dairy cows were determined as having a status of energy balance. According to the results of clinical symptom, rectal and B ultrasound examination at 60 to 90 days postpartum, these cows were divided into twenty estrus and twenty-four anestrus group, other dairy cows were removed. 1H nuclear magnetic resonance technology was utilized to detect the plasma metabolites changes and screen different plasma metabolites between anestrus and estrus cows. Ten different metabolites including alanine, glutamic acid, asparagine, creatine, choline, phosphocholine, glycerophosphocholine, low-density lipoprotein, and very-low-density lipoprotein were significantly decreased in anestrous cows compared with estrous cows. Metabolic pathway analyses indicated that differential metabolites were primarily involved in amino acid and glycerophospholipid metabolism. These metabolites and their enrichment pathways indicate that reduced steroid hormone synthesis precursors result in lower levels of estradiol and progesterone and cause anestrus in negative energy balance. These data provide a better understanding of the changes that may affect estrus of postpartum dairy cows at NEB status and lay the ground for further research.


2011 ◽  
Vol 59 (4) ◽  
pp. 497-510 ◽  
Author(s):  
Vera Faigl ◽  
Mónika Keresztes ◽  
Alíz Márton ◽  
Hedvig Fébel ◽  
Margit Kulcsár ◽  
...  

Seasonal differences in the resumption of postpartum ovarian activity, milk production and periparturient metabolic status were investigated in lactating non-suckling dairy Awassi sheep in two consecutive experiments. In Experiment 1, autumn-lambing (AL, n = 27) and spring-lambing (SL, n = 37) ewes were investigated. Ovarian activity was monitored by means of individual progesterone (P4) profiles from day 5 to day 100 post partum. Most of the AL dams (89%) ovulated till day 35 after parturition and became cyclic thereafter. Incidence of persistent corpus luteum (CLP) and short luteal phases (sCL) was frequent (18% and 29%, respectively) among non-conceiving dams. In contrast, only 24% of the SL ewes ovulated before day 35. P4 levels during the luteal phase were lower in cyclic animals, and the cycle was longer in SL than in AL animals. No CLP or sCL was detected in the spring-lambing group, and 61% of SL ewes remained acyclic till the end of the trial. Lactation length was significantly longer in SL dams than in AL ewes (P = 0.008). According to the plasma metabolites (BHB, NEFA) and metabolic hormones (insulin, IGF-I, thyroxine) examined, negative energy balance did not appear in any of the animals. However, seasonal differences were seen in IGF-I and thyroxine levels, which were higher in the SL dams. In Experiment 2, influence of additional lighting was studied in autumn-lambing ewes. The long-day photoperiod (LD, n = 23) group was exposed to artificial light from sunset till midnight (approx. 16 h light/8 h dark) from some weeks before the expected date of delivery in mid-September until the end of December. The control group (n = 25) experienced only natural daylength. The first postpartum ovulation tended to occur later in the LD animals than in the controls (P = 0.047). The lactation of the LD group tended to be longer (P = 0.061). NEFA, BHB, insulin, IGF-I and thyroxine levels did not differ between the groups. Conclusions: (i) The ovarian function of the Awassi population is seasonal under temperate continental climate conditions. (ii) The first postpartum ovulation of non-suckling, autumn-lambing dams may occur very early, even before the completion of uterine involution. (iii) Additional artificial lighting may delay the time of first postpartum ovulation in AL ewes. (iv) Postpartum negative energy balance is unlikely to occur in dairy Awassi ewes even in high-producing intensive systems.


Sign in / Sign up

Export Citation Format

Share Document