scholarly journals Static corrosion tests of iron-based biomaterials in the environment of simulated body fluids

2019 ◽  
Vol 63 (3) ◽  
pp. 113-120
Author(s):  
R. Gorejová ◽  
R. Oriňaková ◽  
A. Oriňak ◽  
M. Kupková ◽  
M. Hrubovčáková ◽  
...  

Abstract Biodegradable metallic implants are materials that serve as a temporary implants and scaffolds. They degrade directly in vivo and therefore eliminate need for secondary surgical intervention. They are often made of metals such as magnesium, iron, zinc and can be modified by coating with the inorganic or polymeric layer. In this work iron-based biomaterial was prepared and modified with polymeric (polyethyleneimine, PEI) layer. Its degradation behavior was studied under conditions of simulated body fluids at 37 ± 0.2 °C in the form of static immersion tests. It has been shown that the surface modification caused an acceleration of degradation of the material and also had an influence on the corrosion mechanism.

1996 ◽  
Vol 452 ◽  
Author(s):  
L. T. Canham ◽  
C. L. Reeves ◽  
D. J. Wallis ◽  
J. P. Newey ◽  
M. R. Houlton ◽  
...  

AbstractThe response of a range of porous Si and poly Si films to storage in acellular simulated body fluids is summarised and its implications discussed. It is suggested that the combination of VLSI technology, micromachining and surface microstructuring achievable with silicon, could establish this prominent semiconductor as a very useful biomaterial by the next century. The ‘biocompatibility’ of a variety of silicon microstructures, and even bulk silicon has received surprisingly little study, but now warrants detailed in-vitro and in-vivo assessment.


2020 ◽  
Vol 71 (1) ◽  
pp. 45-50
Author(s):  
George Jinescu ◽  
Nicolae Bacalbasa ◽  
Andra Evtodiev ◽  
Iulia-Adelina Marin ◽  
Ioana Chiulan ◽  
...  

In this work, silicone elastomer films with potential to be used as implantable pelvic prosthesis were prepared and their bioactivity was studied both in vitro and in vivo environment. Tensile tests, hardness measurement and compression analysis revealed no significant decrease of the mechanical performance after in vitro hydrolytic degradation in simulated body fluids. The in vivo biocompatibility of films was assessed by implanting them subcutaneously in swine model, for 30 days. Their mechanical characteristics were similar to those of samples immersed in simulated body fluids, for the same time interval. No sign of fibrosis or necrosis were detected from the histological analysis performed on the tissue surrounding the films. In combination, these results indicate that this material has a very good resistance to mechanical and chemical fatigue, do not release any toxic degradation products and, therefore, has great potential as to be used further for preparation of pelvic prosthesis.


2020 ◽  
Author(s):  
Eshani Hettiarachchi ◽  
◽  
Shaylene Paul ◽  
Shaylene Paul ◽  
Milton Das ◽  
...  

CrystEngComm ◽  
2021 ◽  
Author(s):  
Shuqin Jiang ◽  
Yuanyuan Cao ◽  
Chenxi Zong ◽  
Yuanfeng Pang ◽  
Zhiwen Sun

The regulation effect of Mg2+ on HAP crystallization is closely related to the adding time of Mg2+. The introduction of Mg2+ in the ACP unstable stage is unable to inhibit HAP crystallization.


Talanta ◽  
1983 ◽  
Vol 30 (2) ◽  
pp. 121-123 ◽  
Author(s):  
J. Wang ◽  
L.D. Hutchins ◽  
S. Selim ◽  
L.B. Cumming

1963 ◽  
Vol 117 (1) ◽  
pp. 105-125 ◽  
Author(s):  
Manuel E. Kaplan ◽  
James H. Jandl

Studies were undertaken in man and in the rat comparing the effects of rheumatoid factors and immune antiglobulins on red cells sensitized with incomplete antibodies. The interaction of immune antiglobulins with sensitized red cells produced (a) agglutination in vitro and (b) an accelerated sequestration of the sensitized cells in vivo. In contrast, rheumatoid macroglobulins, although capable of agglutinating Rh-sensitized red cells in vitro, did not modify their destruction in vivo. The failure of rheumatoid factors to function as antiglobulins in vivo appears to reflect their non-reactivity with sensitized cells in whole serum. It is suggested: (a) that the native (7S) gamma globulins of plasma competitively inhibit rheumatoid factors from reacting with fixed antibody in the blood stream; (b) that if these macroglobulins do indeed have pathogenetic activity, this may be limited to body fluids of low protein content.


2006 ◽  
Vol 15-17 ◽  
pp. 113-118 ◽  
Author(s):  
Hendra Hermawan ◽  
Maryam Moravej ◽  
Dominique Dubé ◽  
Michel Fiset ◽  
D. Mantovani

The short-term need of scaffolding function of stent and the prevention of potential longterm complication of permanently implanted stent have directed to the original idea of biodegradable stent. Selecting and developing materials showing appropriate mechanical and degradation properties are key steps for the development of this new class of medical devices. Therefore, the study of their in vitro degradation behaviour is mandatory for the selection of potential candidate materials suited in vivo. In this work, the degradation behaviour of current studied biodegradable metals including three magnesium alloys (Mg, AM60B and AZ91D), pure iron and Fe-35Mn was investigated. The tests were performed in a simulated blood plasma solution at 37±0.1 oC, using three different methods; potentiodynamic polarization, static immersion, and dynamic test in a test-bench which mimics the flow condition in human coronary artery. Degradation rate was determined as ion release rate measured by using atomic adsorption spectroscopy (AAS) and also estimated from weight loss and corrosion current. Surface morphology and chemical composition of corroded specimens were analyzed by using SEM/EDS. The three degradation methods provide consistent results in corrosion tendency, where Mg showed the highest corrosion rate followed by AZ91D, AM60B, Fe-35Mn and iron. Potentiodynamic polarization gives a rapid estimation of corrosion behaviour and rate. Static immersion test shows the effect of time on the degradation rate and behaviour. Dynamic test provides the closest approach to the environment after stent implantation and its results show the effect of the flow on the materials degradation. In conclusion, the three investigated methods can be applied for screening, selecting and validating materials for degradable stent application before going further to in vivo assessments.


2014 ◽  
Vol 604 ◽  
pp. 175-179 ◽  
Author(s):  
Lasma Poca ◽  
Arita Dubnika ◽  
Dagnija Loca ◽  
Liga Berzina-Cimdina

In the present study, thein vitrobioactivity of silver-doped hydroxyapatite (HAp/Ag) scaffolds was investigated. HAp/Ag was prepared using two different modified wet precipitation methods. The X-ray powder diffraction (XRD) results showed, that sintered HAp/Ag samples prepared using method (I) contain two phases HAp and Ag, but samples prepared by method (II) contain three different phases - HAp, Ag and AgO. After 2 month incubation period in simulated body fluid (SBF), surface of HAp/Ag scaffolds was coated with bone-like apatite. Thickness of bone-like apatite layer increased from 2 μm up to 32 μm, increasing the incubation period.


Author(s):  
Fabian H.L. Starsich ◽  
Inge K. Herrmann ◽  
Sotiris E. Pratsinis

Nanoparticle-based systems offer fascinating possibilities for biomedicine, but their translation into clinics is slow. Missing sterile, reproducible, and scalable methods for their synthesis along with challenges in characterization and poor colloidal stability of nanoparticles in body fluids are key obstacles. Flame aerosol technology gives proven access to scalable synthesis of nanoparticles with diverse compositions and architectures. Although highly promising in terms of product reproducibility and sterility, this technology is frequently overlooked, as its products are of fractal-like aggregated and/or agglomerated morphology. However, coagulation is a widely occurring phenomenon in all kinds of particle-based systems. In particular, protein-rich body fluids encountered in biomedical settings often lead to destabilization of colloidal nanoparticle suspensions in vivo. We aim to provide insights into how particle–particle interactions can be measured and controlled. Moreover, we show how particle coupling effects driven by coagulation may even be beneficial for certain sensing, therapeutic, and bioimaging applications.


Sign in / Sign up

Export Citation Format

Share Document