Degradation Behaviour of Metallic Biomaterials for Degradable Stents

2006 ◽  
Vol 15-17 ◽  
pp. 113-118 ◽  
Author(s):  
Hendra Hermawan ◽  
Maryam Moravej ◽  
Dominique Dubé ◽  
Michel Fiset ◽  
D. Mantovani

The short-term need of scaffolding function of stent and the prevention of potential longterm complication of permanently implanted stent have directed to the original idea of biodegradable stent. Selecting and developing materials showing appropriate mechanical and degradation properties are key steps for the development of this new class of medical devices. Therefore, the study of their in vitro degradation behaviour is mandatory for the selection of potential candidate materials suited in vivo. In this work, the degradation behaviour of current studied biodegradable metals including three magnesium alloys (Mg, AM60B and AZ91D), pure iron and Fe-35Mn was investigated. The tests were performed in a simulated blood plasma solution at 37±0.1 oC, using three different methods; potentiodynamic polarization, static immersion, and dynamic test in a test-bench which mimics the flow condition in human coronary artery. Degradation rate was determined as ion release rate measured by using atomic adsorption spectroscopy (AAS) and also estimated from weight loss and corrosion current. Surface morphology and chemical composition of corroded specimens were analyzed by using SEM/EDS. The three degradation methods provide consistent results in corrosion tendency, where Mg showed the highest corrosion rate followed by AZ91D, AM60B, Fe-35Mn and iron. Potentiodynamic polarization gives a rapid estimation of corrosion behaviour and rate. Static immersion test shows the effect of time on the degradation rate and behaviour. Dynamic test provides the closest approach to the environment after stent implantation and its results show the effect of the flow on the materials degradation. In conclusion, the three investigated methods can be applied for screening, selecting and validating materials for degradable stent application before going further to in vivo assessments.

2019 ◽  
Vol 20 (19) ◽  
pp. 4859 ◽  
Author(s):  
Ole Jung ◽  
Dario Porchetta ◽  
Marie-Luise Schroeder ◽  
Martin Klein ◽  
Nils Wegner ◽  
...  

The degradation rate of magnesium (Mg) alloys is a key parameter to develop Mg-based biomaterials and ensure in vivo-mechanical stability as well as to minimize hydrogen gas production, which otherwise can lead to adverse effects in clinical applications. However, in vitro and in vivo results of the same material often differ largely. In the present study, a dynamic test bench with several single bioreactor cells was constructed to measure the volume of hydrogen gas which evolves during magnesium degradation to indicate the degradation rate in vivo. Degradation medium comparable with human blood plasma was used to simulate body fluids. The media was pumped through the different bioreactor cells under a constant flow rate and 37 °C to simulate physiological conditions. A total of three different Mg groups were successively tested: Mg WE43, and two different WE43 plasma electrolytically oxidized (PEO) variants. The results were compared with other methods to detect magnesium degradation (pH, potentiodynamic polarization (PDP), cytocompatibility, SEM (scanning electron microscopy)). The non-ceramized specimens showed the highest degradation rates and vast standard deviations. In contrast, the two PEO samples demonstrated reduced degradation rates with diminished standard deviation. The pH values showed above-average constant levels between 7.4–7.7, likely due to the constant exchange of the fluids. SEM revealed severe cracks on the surface of WE43 after degradation, whereas the ceramized surfaces showed significantly decreased signs of corrosion. PDP results confirmed the improved corrosion resistance of both PEO samples. While WE43 showed slight toxicity in vitro, satisfactory cytocompatibility was achieved for the PEO test samples. In summary, the dynamic test bench constructed in this study enables reliable and simple measurement of Mg degradation to simulate the in vivo environment. Furthermore, PEO treatment of magnesium is a promising method to adjust magnesium degradation.


2007 ◽  
Vol 330-332 ◽  
pp. 161-164 ◽  
Author(s):  
E. A. Abou Neel ◽  
I. Ahmed ◽  
Jonathan C. Knowles

This study investigated the mixed alkali effect in a series of phosphate based glasses. These glasses were of the composition 0.5P2O5-0.2CaO-0.3-xNa2O-xK2O where x=0 to 0.3 in steps of 0.05. This study considered density measurements using Archimedes’s principle, thermal characterisation using differential scanning calorimetry, phase analysis following crystallisation using X-ray powder diffraction (XRD), and degradation studies combined with ion release. The results showed that these mixed alkali glasses showed a linear decrease in density, with the ternary single alkali glass with 0.3mol K2O showing a 3% reduction in density as compared to that with 0.3mol Na2O which correlated well with the difference in ionic diameter and atomic weight of both cations. These glasses also showed intermediate glass transition temperature (Tg) values, compared to those of the ternary single alkali glasses having the same alkali oxide content, and the minimum Tg value was recorded for equimolar amounts of both alkali oxides. However, they did not show any significant change in the degradation rate compared to the glass with 0.3mol Na2O with the exception of the 0.25mol K2O glass. The single alkali glass with 0.3mol K2O showed a significant increase in the degradation rate by an approximate one order of magnitude. For the mixed alkali glasses with low molar concentration of K2O, only sodium phosphate-rich phases [NaCa(PO3)3 and Na4Ca(PO3)6] were detected from XRD; at high molar concentrations however, potassium phosphate-rich phases [KCa(PO3)3 and KPO3] were detected. At equimolar concentration of both alkali cations, KCa(PO3)3 and Na4Ca(PO3)6 were identified. K+, Ca2+, and P3O9 3- release followed the degradation behaviour where the highly degrading glasses with 0.25 and 0.3mol K2O released the highest amount of these ions; however, there was no definite trend in the remaining glass compositions.


2014 ◽  
Vol 225 ◽  
pp. 71-76 ◽  
Author(s):  
Wolfgang Dietzel

Magnesium alloys are increasingly used in biomedical applications as temporary implants in the human body. The degradation behaviour of magnesium in physiological environments, in combination with the tendency of the corrosion products to be harmlessly dissolved and excreted with the urine, make magnesium very attractive for temporary implant applications. One of these applications is the use of the material for making coronary stents. Such applications are, on the other hand, critically dependent on the mechanical integrity of the implant during service. A number of recent studies have evaluated the in-vivo and in-vitro corrosion behaviour of magnesium and its alloys, and the ongoing research seeks to provide a fundamental understanding of the factors that influence their bio-degradation and environmental failure and to expand this understanding through experimental evidence. In this paper, the propensity of the magnesium alloys AM30 and WE43 to hydrogen embrittlement and to corrosion fatigue was studied using constant extension rate tensile tests on fatigue pre-cracked compact specimens and corrosion fatigue tests on tubes which are typically used for the production of stents and which were tested in simulated body fluid.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 915
Author(s):  
Jazelli Mueterthies ◽  
Davit A. Potoyan

Proteins with low complexity, disordered sequences are receiving increasing attention due to their central roles in the biogenesis and regulation of membraneless organelles. In eukaryotic organisms, a substantial fraction of disordered proteins reside in the nucleus, thereby facilitating the formation of nuclear bodies, nucleolus, and chromatin compartmentalization. The heterochromatin family of proteins (HP1) is an important player in driving the formation of gene silenced mesoscopic heterochromatin B compartments and pericentric regions. Recent experiments have shown that the HP1a sequence of Drosophila melanogaster can undergo liquid-liquid phase separation under both in vitro and in vivo conditions, induced by changes of the monovalent salt concentration. While the phase separation of HP1a is thought to be the mechanism underlying chromatin compartmentalization, the molecular level mechanistic picture of salt-driven phase separation of HP1a has remained poorly understood. The disordered hinge region of HP1a is seen as the driver of salt-induced condensation because of its charge enriched sequence and post-translational modifications. Here, we set out to decipher the mechanisms of salt-induced condensation of HP1a through a systematic study of salt-dependent conformations of single chains and fuzzy dimers of disordered HP1a hinge sequences. Using multiple independent all-atom simulations with and without enhanced sampling, we carry out detailed characterization of conformational ensembles of disordered HP1a chains under different ionic conditions using various polymeric and structural measures. We show that the mobile ion release, enhancement of local transient secondary structural elements, and side-chain exposure to solvent are robust trends that accompany fuzzy dimer formation. Furthermore, we find that salt-induced changes in the ensemble of conformations of HP1a disordered hinge sequence fine-tune the inter-chain vs. self-chain interactions in ways that favor fuzzy dimer formation under low salt conditions in the agreement with condensation trends seen in experiments.


Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3708
Author(s):  
Bhaba K. Das ◽  
Aarthi Kannan ◽  
Quy Nguyen ◽  
Jyoti Gogoi ◽  
Haibo Zhao ◽  
...  

Merkel cell carcinoma (MCC) is an often-lethal skin cancer with increasing incidence and limited treatment options. Although immune checkpoint inhibitors (ICI) have become the standard of care in advanced MCC, 50% of all MCC patients are ineligible for ICIs, and amongst those treated, many patients develop resistance. There is no therapeutic alternative for these patients, highlighting the urgent clinical need for alternative therapeutic strategies. Using patient-derived genetic insights and data generated in our lab, we identified aurora kinase as a promising therapeutic target for MCC. In this study, we examined the efficacy of the recently developed and highly selective AURKA inhibitor, AK-01 (LY3295668), in six patient-derived MCC cell lines and two MCC cell-line-derived xenograft mouse models. We found that AK-01 potently suppresses MCC survival through apoptosis and cell cycle arrest, particularly in MCPyV-negative MCC cells without RB expression. Despite the challenge posed by its short in vivo durability upon discontinuation, the swift and substantial tumor suppression with low toxicity makes AK-01 a strong potential candidate for MCC management, particularly in combination with existing regimens.


2021 ◽  
Vol 12 (3) ◽  
pp. 44
Author(s):  
Leyla Hasandoost ◽  
Daniella Marx ◽  
Paul Zalzal ◽  
Oleg Safir ◽  
Mark Hurtig ◽  
...  

Poly(methyl methacrylate) (PMMA) is used to manage bone loss in revision total knee arthroplasty (rTKA). However, the application of PMMA has been associated with complications such as volumetric shrinkage, necrosis, wear debris, and loosening. Glass polyalkenoate cements (GPCs) have potential bone cementation applications. Unlike PMMA, GPC does not undergo volumetric shrinkage, adheres chemically to bone, and does not undergo an exothermic setting reaction. In this study, two different compositions of GPCs (GPCA and GPCB), based on the patented glass system SiO2-CaO-SrO-P2O5-Ta2O5, were investigated. Working and setting times, pH, ion release, compressive strength, and cytotoxicity of each composition were assessed, and based on the results of these tests, three sets of samples from GPCA were implanted into the distal femur and proximal tibia of three sheep (alongside PMMA as control). Clinical CT scans and micro-CT images obtained at 0, 6, and 12 weeks revealed the varied radiological responses of sheep bone to GPCA. One GPCA sample (implanted in the sheep for 12 weeks) was characterized with no bone resorption. Furthermore, a continuous bone–cement interface was observed in the CT images of this sample. The other implanted GPCA showed a thin radiolucent border at six weeks, indicating some bone resorption occurred. The third sample showed extensive bone resorption at both six and 12 weeks. Possible speculative factors that might be involved in the varied response can be: excessive Zn2+ ion release, low pH, mixing variability, and difficulty in inserting the samples into different parts of the sheep bone.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1441
Author(s):  
Yangpeng Lu ◽  
Yanan Jia ◽  
Zihan Xue ◽  
Nannan Li ◽  
Junyu Liu ◽  
...  

Inonotus obliquus (Chaga mushroom) is a kind of medicine and health food widely used by folk in China, Russia, Korea, and some occidental countries. Among the extracts from Inonotus obliquus, Inonotus obliquus polysaccharide (IOPS) is supposed to be one of the major bioactive components in Inonotus obliquus, which possesses antitumor, antioxidant, anti-virus, hypoglycemic, and hypolipidemic activities. In this review, the current advancements on extraction, purification, structural characteristics, and biological activities of IOPS were summarized. This review can provide significant insight into the IOPS bioactivities as their in vitro and in vivo data were summarized, and some possible mechanisms were listed. Furthermore, applications of IOPS were reviewed and discussed; IOPS might be a potential candidate for the treatment of cancers and type 2 diabetes. Besides, new perspectives for the future work of IOPS were also proposed.


2007 ◽  
Vol 336-338 ◽  
pp. 1545-1548
Author(s):  
Lin Luo ◽  
Guang Fu Yin ◽  
Yun Zhang ◽  
Ya Dong Yao ◽  
Wei Zhong Yang ◽  
...  

Porous biodegradable scaffolds are widely used in bone tissue engineering to provide temporary templates for cellular attachment and matrix synthesis. Ideally, the degradation rate in vivo may be similar or slightly less than that of tissue formation, allowing for the maintenance of the scaffold structure and the mechanical support during early stages of tissue formation. Eventually, the 3-D spaces occupied by the porous scaffolds will be replaced by newly formed tissue. In this work, β-tricalcium phosphate/Poly-L lactide (β-TCP/PLLA) scaffolds with different proportions of β-TCP to PLLA were investigated. The effects of β-TCP proportions on degradation rate and mechanical strengths of the scaffolds were evaluated in simulated body fluid (SBF) at 37°C up to 42 days. Results show that: different proportions of β-TCP to PLLA have significant influence on degradation behaviors of the scaffolds, and mechanical strengths of the scaffolds with weight proportion of β-TCP to PLLA being 2 to 1 are much higher than those of the others during the degradation period. And in this period, the scaffolds biodegrade slowly, and Hydroxyl Carbonate Apatite (HCA) forms in the surface of the material.


2015 ◽  
Vol 11 ◽  
pp. 520-530 ◽  
Author(s):  
Sachiko Hiromoto ◽  
Motoki Inoue ◽  
Tetsushi Taguchi ◽  
Misao Yamane ◽  
Naofumi Ohtsu

Sign in / Sign up

Export Citation Format

Share Document