scholarly journals Gallium Concentration Optimisation of Gallium Doped Zinc Oxide for Improvement of Optical Properties

2021 ◽  
Vol 58 (1) ◽  
pp. 33-43
Author(s):  
A. Spustaka ◽  
M. Senko ◽  
D. Millers ◽  
I. Bite ◽  
K. Smits ◽  
...  

AbstractThe near-band luminescence of doped ZnO is promising for advanced scintillators; however, the dopant type and concentration effects require a detailed study. Undoped and Ga-doped ZnO nanopowders were prepared by a microwave-assisted solvothermal method and the gallium concentration effect on luminescence properties was studied. The near-band luminescence peak position dependence on gallium concentration was observed. Near-band luminescence intensity versus defect luminescence intensity ratio was explored for different gallium concentrations and the optimal value was determined. Samples were prepared with dopant concentrations between 0.2 and 1.5 at%, XRD analysis confirmed that samples contained only zinc oxide hexagonal wurtzite phase. The results of the research showed that ZnO:Ga containing 0.9 at.% gallium was promising for scintillators.

2013 ◽  
Vol 1551 ◽  
pp. 47-52 ◽  
Author(s):  
Navendu Goswami ◽  
Anshuman Sahai

ABSTRACTIn this article, structural evolution in nickel doped zinc oxide nanostructures is reported. The ZnO nanostructures are synthesized with 1-10% of Ni doping adopting a chemical precipitation method. The undoped and doped nanostructures thus prepared, were systematically investigated employing X-ray diffraction (XRD), transmission and scanning electron microscopy (TEM/SEM), Fourier transform infrared (FTIR) and micro-Raman spectroscopy (μRS). The identification of wurtzite phase and determination of lattice parameters of Ni doped ZnO nanocrystallites is ascertained through XRD analysis. TEM/SEM images reveal the structural alteration of ZnO with variation of Ni doping concentrations. The study of vibrational modes of nanostructures at different stages of structural transformation, as performed through FTIR and Raman spectroscopy, assist in deciphering the crucial role of Ni doping concentration in gradual evolution of nickel doped ZnO structure from nanoparticles to nanorods.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 821 ◽  
Author(s):  
H.S. Ali ◽  
Ali Alghamdi ◽  
G. Murtaza ◽  
H.S. Arif ◽  
Wasim Naeem ◽  
...  

In this work, microemulsion method has been followed to synthesize vanadium-doped Zn1−xVxO (with x = 0.0, 0.02, 0.04, 0.06, 0.08, and 0.10) nanoparticles. The prepared samples are characterized by several techniques to investigate the structural, morphology, electronic, functional bonding, and optical properties. X-ray diffractometer (XRD) analysis confirms the wurtzite phase of the undoped and V-doped ZnO nanoparticles. Variation in the lattice parameters ensures the incorporation of vanadium in the lattice of ZnO. Scanning electron microscopy (SEM) shows that by increasing contents of V ions, the average particle size increases gradually. X-ray Absorption Near Edge Spectroscopy (XANES) at the V L3,2 edge, oxygen K-edge, and Zn L3,2 edge reveals the presence and effect of vanadium contents in the Zn host lattice. Furthermore, the existence of chemical bonding and functional groups are also asserted by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). UV–Visible analysis shows that by increasing V+ contents, a reduction up to 2.92 eV in the energy band gap is observed, which is probably due to an increase in the free electron concentration and change in the lattice parameters.


2020 ◽  
Vol 10 (04) ◽  
pp. 2050017
Author(s):  
MD. Parvez Ahmad ◽  
A. Venkateswara Rao ◽  
K. Suresh Babu ◽  
G. Narsinga Rao

In this paper, Carbon-doped Zinc Oxide (C-ZnO) samples were prepared using the solid-state reaction method. The influence of carbon-doping on the structural and dielectric properties of ZnO samples was studied. The shift in the highest peak position (101) in XRD patterns of carbon-doped samples was observed. The Raman peak at 581[Formula: see text]cm[Formula: see text] in undoped ZnO was shifted and broadened in carbon-doped ZnO samples. The ZnO samples doped with carbon show higher values of dielectric constant ([Formula: see text] at 1[Formula: see text]kHz) compared to pure ZnO([Formula: see text] at 1[Formula: see text]kHz) which was due to increase in native point defects in the samples. The ac conductivity ([Formula: see text]) value of the carbon-doped sample was enhanced by 103 times for ((ZnO)[Formula: see text] [Formula: see text]) sample.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Chiara Gionco ◽  
Debora Fabbri ◽  
Paola Calza ◽  
Maria Cristina Paganini

Fast and simple synthetic methods for the preparation of bare and N-doped zinc oxide, involving a stirring or microwave assisted process, are proposed. All samples were characterized by XRD analysis, BET, and DRS-UV-Vis spectroscopy. The photocatalytic activity of these nanostructured oxides was investigated using phenol and 2,4-dichlorophenol as model molecules under UV-A and visible light irradiation. N-doping in ZnO nanostructures provided a significant increase in phenol and 2,4-dichlorophenol degradation rate under Vis light, leading to a degradation rate higher than that obtained with bare ZnO. The release of chlorine as chloride ions from 2,4-dichlorophenol with N-doped ZnO was faster achieved as well and complete dechlorination was reached within 2 h of irradiation (N-doped ZnO) instead of 3 h (bare ZnO).


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Muhammad Ikram ◽  
Sidra Aslam ◽  
Ali Haider ◽  
Sadia Naz ◽  
Anwar Ul-Hamid ◽  
...  

AbstractVarious concentrations of Mg-doped ZnO nanorods (NRs) were prepared using co-precipitation technique. The objective of this study was to improve the photocatalytic properties of ZnO. The effect of Mg doping on the structure, phase constitution, functional groups presence, optical properties, elemental composition, surface morphology and microstructure of ZnO was evaluated with XRD, FTIR, UV–Vis spectrophotometer, EDS, and HR-TEM, respectively. Optical absorption spectra obtained from the prepared samples showed evidence of blueshift upon doping. XRD results revealed hexagonal wurtzite phase of nanocomposite with a gradual decrease in crystallite size with Mg addition. PL spectroscopy showed trapping efficiency and migration of charge carriers with electron–hole recombination behavior, while HR-TEM estimated interlayer d-spacing. The presence of chemical bonding, vibration modes and functional groups at the interface of ZnO was revealed by FTIR and Raman spectra. In this study, photocatalytic, sonocatalytic and sonophotocatalytic performance of prepared NRs was systematically investigated by degrading a mixture of methylene blue and ciprofloxacin (MBCF). Experimental results suggested that improved degradation performance was shown by Mg-doped ZnO NRs. We believe that the product synthesized in this study will prove to be a beneficial and promising photocatalyst for wastewater treatment. Conclusively, Mg-doped ZnO exhibited substantial (p < 0.05) efficacy against gram-negative (G-ve) as compared to gram-positive (G+ve) bacteria. In silico molecular docking studies of Mg-doped ZnO NRs against DHFR (binding score: − 7.518 kcal/mol), DHPS (binding score: − 6.973 kcal/mol) and FabH (− 6.548 kcal/mol) of E. coli predicted inhibition of given enzymes as possible mechanism behind their bactericidal activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pandiyan Amuthavalli ◽  
Jiang-Shiou Hwang ◽  
Hans-Uwe Dahms ◽  
Lan Wang ◽  
Jagannathan Anitha ◽  
...  

AbstractMicrobes or parasites spread vector-borne diseases by mosquitoes without being affected themselves. Insecticides used in vector control produce a substantial problem for human health. This study synthesized zinc oxide nanoparticles (ZnO NPs) using Lawsonia inermis L. and were characterized by UV–vis, FT-IR, SEM with EDX, and XRD analysis. Green synthesized ZnO NPs were highly toxic against Anopheles stephensi, whose lethal concentrations values ranged from 5.494 ppm (I instar), 6.801 ppm (II instar), 9.336 ppm (III instar), 10.736 ppm (IV instar), and 12.710 ppm (pupae) in contrast to L. inermis treatment. The predation efficiency of the teleost fish Gambusia affinis and the copepod Mesocyclops aspericornis against A. stephensi was not affected by exposure at sublethal doses of ZnO NPs. The predatory potency for G. affinis was 45 (I) and 25.83% (IV), copepod M. aspericornis was 40.66 (I) and 10.8% (IV) while in an ZnO NPs contaminated environment, the predation by the fish G. affinis was boosted to 71.33 and 34.25%, and predation of the copepod M. aspericornis was 60.35 and 16.75%, respectively. ZnO NPs inhibited the growth of several microbial pathogens including the bacteria (Escherichia coli and Bacillus subtilis) and the fungi (Alternaria alternate and Aspergillus flavus), respectively. ZnO NPs decreased the cell viability of Hep-G2 with IC50 value of 21.63 µg/mL (R2 = 0.942; P < 0.001) while the concentration increased from 1.88 to 30 µg/mL. These outcomes support the use of L. inermis mediated ZnO NPs for mosquito control and drug development.


Proceedings ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 39
Author(s):  
Zahira. El khalidi ◽  
Maryam Siadat ◽  
Elisabetta. Comini ◽  
Salah. Fadili ◽  
Philippe. Thevenin

Chemical gas sensors were studied long ago and nowadays, for the advantageous role they provide to the environment, health condition monitoring and protection. The recent studies focus on the semiconductors sensing abilities, especially of non toxic and low cost compounds. The present work describes the steps to elaborate and perform a chemical sensor using intrinsic and doped semiconductor zinc oxide. First, we synthesized pure oxide using zinc powder, then, two other samples were established where we introduced the same doping percentage of Al and Sn respectively. Using low cost spray pyrolysis, and respecting the same conditions of preparation. The obtained samples were then characterized by X Ray Diffraction (XRD) that revealed the hexagonal wurzite structure and higher crystallite density towards the direction (002), besides the appearance of the vibration modes related to zinc oxide, confirmed by Raman spectroscopy. SEM spectroscopy showed that the surface morphology is ideal for oxidizing/reduction reactions, due to the porous structure and the low grain sizes, especially observed for the sample Sn doped ZnO. The gas testing confirms these predictions showing that the highest response is related to Sn doped ZnO compared to ZnO and followed by Al doped ZnO. The films exhibited responses towards: CO, acetone, methanol, H2, ammonia and NO2. The concentrations were varied from 10 to 500 ppm and the working temperatures from 250 to 500°C, the optimal working temperatures were 350 and 400 °C. Sn doped ZnO showed a high response towards H2 gas target, with a sensitivity reaching 200 at 500 ppm, for 400 °C.


2008 ◽  
Vol 23 (12) ◽  
pp. 3269-3272 ◽  
Author(s):  
Yutaka Adachi ◽  
Naoki Ohashi ◽  
Tsuyoshi Ohnishi ◽  
Takeshi Ohgaki ◽  
Isao Sakaguchi ◽  
...  

We have investigated the polarity of zinc oxide (ZnO) and Al-doped ZnO films grown on (11¯20) and (0001) sapphire substrates, using coaxial impact collision ion scattering spectroscopy. The films grown by pulsed laser deposition with a nominally undoped ZnO ceramic target had a (000¯1) surface, whereas the films prepared with a 1 mol% Al-doped ZnO ceramic target had a (0001) surface. The usage of Al-doped and undoped targets caused no difference in the in-plane lattice orientation. Electron microscope observations revealed that polarity change due to doping occurred without the formation of any interfacial phase between ZnO and sapphire.


2012 ◽  
Vol 518-523 ◽  
pp. 760-763
Author(s):  
Chang Yun Chen ◽  
Quan Zhan Chen ◽  
Mei Shi ◽  
Feng Zhou ◽  
Chun Hua ◽  
...  

Nonstoichiometric Zinc oxide (ZnO) nanorod arrays doped Co or Ni can be easily obtained by calicining soaked ZnO nanorod arrays. More importantly, the nonstoichiometric doped ZnO nanoarrays have more effective antimicrobial than pure ZnO nanoarrays, which means we can obtain a kind of promising new effective functional nanomaterials.


2018 ◽  
Vol 934 ◽  
pp. 3-7
Author(s):  
Leonid A. Butusov ◽  
Galina K. Chudinova ◽  
Margarita V. Kochneva ◽  
Vladimir V. Kurilkin ◽  
Tatyana F. Sheshko ◽  
...  

This research presents a new perspective on optical biosensors based on zinc oxide nanoparticles. The widely known and successfully applied nanostructured material is modified by the dopant - the green phosphor Terbium, which embedded in the structure of zinc oxide and makes a significant contribution to the fluorescent response of the material in both the UV and visible spectral regions. The effect of various dopant concentrations on the fluorescence of nanostructures was studied; the nanostructures were examined by SEM.


Sign in / Sign up

Export Citation Format

Share Document