scholarly journals IDENTIFICATION OF DRIVING FORCES FOR THE RECOGNITION PROCESSES ON MOLECULARLY IMPRINTED POLYMERS

2013 ◽  
Vol 12 (2) ◽  
pp. 63-69 ◽  
Author(s):  
Natalia Denderz ◽  
Jozef Lehotay

Abstract In this paper the thermodynamic analyses were used to calculate the contributions of entropic and enthalpic terms of the binding processes of selected derivatives of alkoxy-substituted phenylcarbamic acid (MEP) and phenolic acids (PAs) on the series of molecularly imprinted polymers (MIPs) and corresponding non-imprinted polymers (NIPs). All polymers were prepared by a bulk polymerization method with different porogens and functional monomers. The thermodynamic assessments were based on the quantification by HPLC measurements of the analytes tested in different mobile phases and at temperature range from 293 K to 333 K. The thermodynamic parameters were determined from the van’t Hoff plots - dependences between logarithms of the retention factors of studied analytes (ln k) and the inverse value of the temperature (1/T). Almost all data showed that enthalpic term was the dominating driving force for the investigated analytes.

e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Pattarawarapan Mookda ◽  
Komkham Singha ◽  
Kareuhanon Weeranuch ◽  
Tayapiwatana Chatchai

AbstractTo obtain molecularly imprinted polymers capable of selective rebinding with nicotinamide (NAM), NAM imprinted polymers were synthesized via bulk polymerization using various functional monomers and cross-linkers. The NAM recognition properties of these polymers were investigated in organic and aqueous solvents by equilibrium rebinding experiments. The results show that the imprinted polymer prepared using 1:4:4 molar ratio of NAM/MAA/TRIM in dichloromethane exhibited the greatest NAM binding capacity and selectivity. This polymer is potentially valuable for the analysis of NAM in complex matrices where selective isolation and identification are needed.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 296
Author(s):  
Mashaalah Zarejousheghani ◽  
Alaa Jaafar ◽  
Hendrik Wollmerstaedt ◽  
Parvaneh Rahimi ◽  
Helko Borsdorf ◽  
...  

Molecularly imprinted polymers have emerged as cost-effective and rugged artificial selective sorbents for combination with different sensors. In this study, quaternary ammonium cations, as functional monomers, were systematically evaluated to design imprinted polymers for glyphosate as an important model compound for electrically charged and highly water-soluble chemical compounds. To this aim, a small pool of monomers were used including (3-acrylamidopropyl)trimethylammonium chloride, [2-(acryloyloxy)ethyl]trimethylammonium chloride, and diallyldimethylammonium chloride. The simultaneous interactions between three positively charged monomers and glyphosate were preliminary evaluated using statistical design of the experiment method. Afterwards, different polymers were synthesized at the gold surface of the quartz crystal microbalance sensor using optimized and not optimized glyphosate-monomers ratios. All synthesized polymers were characterized using atomic force microscopy, contact angle, Fourier-transform infrared, and X-ray photoelectron spectroscopy. Evaluated functional monomers showed promise as highly efficient functional monomers, when they are used together and at the optimized ratio, as predicted by the statistical method. Obtained results from the modified sensors were used to develop a simple model describing the binding characteristics at the surface of the different synthesized polymers. This model helps to develop new synthesis strategies for rational design of the highly selective imprinted polymers and to use as a sensing platform for water soluble and polar targets.


2011 ◽  
Vol 121 (6) ◽  
pp. 3590-3595 ◽  
Author(s):  
Seyed Ahmad Mohajeri ◽  
Gholamreza Karimi ◽  
Javad Aghamohammadian ◽  
Mehdi Rajabnia Khansari

Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 602 ◽  
Author(s):  
Lulu Wang ◽  
Keke Zhi ◽  
Yagang Zhang ◽  
Yanxia Liu ◽  
Letao Zhang ◽  
...  

Three gossypol molecularly imprinted polymers (MIPs) were prepared by bulk polymerization (MIP1), surface layer imprinting using silica gel as the support (MIP2), and the sol-gel process (MIP3). The as-prepared MIPs were characterized by SEM and nitrogen adsorption−desorption techniques to study the morphology structure. The adsorption experiments exhibited that MIP1 had adsorption capacity as high as 564 mg·g−1. The MIP2 showed faster adsorption kinetics than MIP1 and MIP3. The adsorption equilibrium could be reached for gossypol in 40 min. A selectivity study showed that the adsorption capacity of MIPs for gossypol was about 1.9 times higher than that of the structurally-similar analogs ellagic acid and 6.6 times higher than that of the quercetin. It was found that the pseudo-second-order kinetic model and the Freundlich isotherm model were more applicable for the adsorption kinetics and adsorption isotherm of gossypol binding onto the MIP1 and MIP2, respectively. Results suggested that among those three, the MIP2 was a desirable sorbent for rapid adsorption and MIP1 was suitable for selective recognition of gossypol.


2016 ◽  
Vol 3 (1) ◽  
pp. 213-222 ◽  
Author(s):  
Feifei Duan ◽  
Chaoqiu Chen ◽  
Xiaofeng Zhao ◽  
Yongzhen Yang ◽  
Xuguang Liu ◽  
...  

Water-compatible surface molecularly imprinted polymers were synthesized via bi-functional monomers and exhibited excellent adsorption performance for the selective removal of BPA from aqueous media.


2015 ◽  
Vol 1101 ◽  
pp. 256-260 ◽  
Author(s):  
Feng Feng ◽  
Zhi Min Liu ◽  
Zhi Gang Xu

β-Cyclodextrin shows good molecular recognition ability for its unique physical and chemical properties and suitable cavity structure. The selective recognition can be further improved if β-cyclodextrin combines with molecularly imprinted technique. In this paper, the novel β-cyclodextrin functional monomers were introduced. And the preparation and application of molecularly imprinted polymers based on β-cyclodextrin functional monomers were reviewed. The development trend of β-cyclodextrin molecularly imprinted polymers were also prospected.


Sign in / Sign up

Export Citation Format

Share Document