scholarly journals The influence of belt cover thickness on conveyor belt indentation rolling resistance

2019 ◽  
Vol 2 (1) ◽  
pp. 242-248
Author(s):  
Dariusz Woźniak

Abstract One of the methods for lowering of energy consumption in the drive mechanisms of long horizontal belt conveyors is to reduce belt indentation rolling resistances. These resistances depend on a number of factors: bottom cover properties, bottom cover thickness, belt design, idler diameter, load, speed and frequency at which the belt passes on the idler (indentation frequency), as well as on temperature. Determining how these factors influence indentation rolling resistances of various conveyor belt types is of great importance. The article describes a small-scale method for testing indentation rolling resistance. The method allows analysis of the influence of various factors on indentation rolling resistances. The article presents the results of tests on how belt indentation rolling resistance is influenced by thickness of the belt bottom cover. The tests were performed on belts with various core types.

2018 ◽  
Vol 29 ◽  
pp. 00002 ◽  
Author(s):  
Dariusz Woźniak ◽  
Lech Gładysiewicz ◽  
Martyna Konieczna

Belt conveyors are main part of transporting systems in mines and in many other branches of industry. During conveyor belt works different types of resistances are generated. Indentation rolling resistance is the most significant component of the resistances from the perspective of energy losses and it cause the biggest costs as well. According to latest state of analyses and measurements it is well known that theoretical rolling resistance were underestimated in comparison with the measured in-situ one. In this paper new method for determination indentation rolling resistance is presented. The authors compared theoretically and experimentally established damping factors. The relation between these two values enabled to obtain more precise equation for damping function. This function is one of the most important component in calculation of the rolling resistance. In new theoretical model value of rolling resistance is nearly twice higher than this used so far.


2017 ◽  
Vol 15 (2) ◽  
pp. 254-267
Author(s):  
Lu Yan ◽  
Lin Fu-Yan

Purpose As indentation rolling resistance accounts for the major part of the total resistance of belt conveyors, the purpose of this paper is to compute it using a proper method. Design/methodology/approach First, an approximate formula for computing indentation rolling resistance is offered. In this formula, a one-dimensional Winkler foundation and a three-parameter viscoelastic Maxwell solid model of the belt backing material are used to determine the resistance to the motion of a conveyor belt over idlers. The velocity of the belt is an important operating parameter in the working conditions of the belt conveyor. What is more, a set of experimental apparatus which can measure the value of indentation rolling resistance is designed. Findings With the help of the experimental apparatus, the authors obtained a series of measured data under different belt speeds. Finally, a computation example that is provided for a typical rubber compound backing material shows the comparison between measured results and theoretical results which offers the influence of speed on rolling resistance. Originality/value This study provides the design of an apparatus, and finds the relationship between belt speed and indentation rolling resistance.


2018 ◽  
Vol 32 (9) ◽  
pp. 4037-4044 ◽  
Author(s):  
Hong-yue Chen ◽  
Kun Zhang ◽  
Ming-bo Piao ◽  
Xin Wang ◽  
En-dong Li

2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Xiaoxia Zhao ◽  
Wenjun Meng ◽  
Lidong Zhou

Minimizing the power consumption of the belt conveyor is the common wish of all enterprises and even countries. Among all the resistances generated by the belt conveyor during the operation, the indentation rolling resistance accounts for the largest proportion and the power consumed is the largest. Therefore, accurately predicting and reducing the rolling resistance of indentation is the focus of current research. Firstly, based on the three-element Maxwell solid model, the dynamic loading experiments of cylindrical rubber made of conveyor belt cover material were carried out at different temperatures. The identification models of elastic moduli E2 and E3 and viscosity coefficient η2 in the three-element Maxwell model were obtained, and then the fitting functions of the three parameters were gotten, which can intuitively reflect the influence of temperature. Secondly, the mathematical model of the indentation rolling resistance was derived. The mathematical model is characterized by the direct parameters such as belt speed v, thickness of backing material h, the idler radius R, and the rubber viscoelastic parameters E2, E3, and η2 and the indirect parameters such as normal force P and temperature T. Afterwards, the effects of belt speed, normal force, temperature, idler radius, and thickness of underlay on the indentation rolling resistance were studied under different working conditions. After that, experimental testing and analysis were fulfilled using test equipment and compared with theoretical analysis results. The results prove that the theoretical results are basically consistent with the experimental results, in line with the actual engineering rules. Finally, the application of the results in practical engineering was analyzed superficially.


2015 ◽  
Vol 45 (3) ◽  
pp. 53-68 ◽  
Author(s):  
Yan Lu ◽  
Fu-Yan Lin ◽  
Yu-Chao Wang

AbstractSince indentation rolling resistance accounts for the major part of total resistance of belt conveyor, it is important to compute it using a proper method, during the design and application study of the belt conveyor. Firstly, an approximate formula for computing the indentation rolling resistance is offered. In this formula, a one-dimensional Winkler foundation and a three-parameter viscoelastic Maxwell solid model of the belt backing material are used to determine the resistance to motion of a conveyor belt over idlers. The velocity of belt is an important operating parameter in the working conditions of the belt conveyor. What’s more, a set of experimental apparatus, which can measure the value of indentation rolling resistance is designed. Author obtains a series of measured data under the different belt speeds with the help of experimental apparatus. Finally, a computation example, that is provided for a typical rubber compound backing material, shows the comparison between the measured and the theoretical results, which offers the influence of speed on the rolling resistance.


2018 ◽  
Vol 29 ◽  
pp. 00001
Author(s):  
Lech Gładysiewicz ◽  
Martyna Konieczna

Belt conveyors are highly reliable machines able to work in special operating conditions. Harsh environment, long distance of transporting and great mass of transported martials are cause of high energy usage. That is why research in the field of belt conveyor transportation nowadays focuses on reducing the power consumption without lowering their efficiency. In this paper, previous methods for testing rolling resistance are described, and new method designed by authors was presented. New method of testing rolling resistance is quite simple and inexpensive. Moreover it allows to conduct the experimental tests of the impact of different parameters on the value of indentation rolling resistance such as core design, cover thickness, ambient temperature, idler travel frequency, or load value as well. Finally results of tests of relationship between rolling resistance and idler travel frequency and between rolling resistance and idler travel speed was presented.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6180
Author(s):  
Mirosław Bajda ◽  
Monika Hardygóra

Results of tests into the energy-efficiency of belt conveyor transportation systems indicate that the energy consumption of their drive mechanisms can be limited by lowering the main resistances in the conveyor. The main component of these resistances is represented by belt indentation rolling resistance. Limiting its value will allow a reduction in the amount of energy consumed by the drive mechanisms. This article presents a test rig which enables uncomplicated evaluations of such rolling resistances. It also presents the results of comparative tests performed for five steel-cord conveyor belts. The tests involved a standard belt, a refurbished belt and three energy-saving belts. As temperature significantly influences the values of belt indentation rolling resistance, the tests were performed in both positive and negative temperatures. The results indicate that when compared with the standard belt, the refurbished and the energy-efficient belts generate higher and lower indentation rolling resistances, respectively. In order to demonstrate practical advantages resulting from the use of energy-saving belts, this article also includes calculations of the power demand of a conveyor drive mechanism during one calendar year, as measured on a belt conveyor operated in a mine. The replacement of a standard belt with a refurbished belt generates a power demand higher by 4.8%, and with an energy-efficient belt—lower by 15.3%.


Sign in / Sign up

Export Citation Format

Share Document