scholarly journals Analysis of the Influence of the Type of Belt on the Energy Consumption of Transport Processes in a Belt Conveyor

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6180
Author(s):  
Mirosław Bajda ◽  
Monika Hardygóra

Results of tests into the energy-efficiency of belt conveyor transportation systems indicate that the energy consumption of their drive mechanisms can be limited by lowering the main resistances in the conveyor. The main component of these resistances is represented by belt indentation rolling resistance. Limiting its value will allow a reduction in the amount of energy consumed by the drive mechanisms. This article presents a test rig which enables uncomplicated evaluations of such rolling resistances. It also presents the results of comparative tests performed for five steel-cord conveyor belts. The tests involved a standard belt, a refurbished belt and three energy-saving belts. As temperature significantly influences the values of belt indentation rolling resistance, the tests were performed in both positive and negative temperatures. The results indicate that when compared with the standard belt, the refurbished and the energy-efficient belts generate higher and lower indentation rolling resistances, respectively. In order to demonstrate practical advantages resulting from the use of energy-saving belts, this article also includes calculations of the power demand of a conveyor drive mechanism during one calendar year, as measured on a belt conveyor operated in a mine. The replacement of a standard belt with a refurbished belt generates a power demand higher by 4.8%, and with an energy-efficient belt—lower by 15.3%.

2018 ◽  
Vol 10 (7) ◽  
pp. 168781401878393 ◽  
Author(s):  
Lu Yan

Based on Hertz contact theory and one-dimensional Winkler foundation combination with viscoelastic theory, the author derived theoretical formulas of indentation rolling resistance, respectively. Using the laboratorial apparatus of indentation rolling resistance, the author mainly concentrates on the error analysis about two kinds of theoretical formula which bear on indentation rolling resistance compared with experimental result. The reason why author employs Hertz contact theory to discuss indentation rolling resistance is that indentation rolling resistance is a sort of contact resistance. As a result, Hertz contact theory is generally applicable to study it. On the other hand, because conveyor belt has viscoelastic property, it is appropriate to use viscoelastic theory by the aid of three-parameter Maxwell viscoelastic model combination with one-dimensional Winkler foundation. Ultimately, this article infers that theoretical formula based on the Hertz contact is brief and clear compared with one-dimensional Winkler foundation in principle. However, it is noticeable that when the belt is at high speed, the reliability of formula based on Hertz theory has decreased obviously. This conclusion can give a beneficial reference for the energy saving of belt conveyor.


Author(s):  
Alexandra Bousia ◽  
Elli Kartsakli ◽  
Angelos Antonopoulos ◽  
Luis Alonso ◽  
Christos Verikoukis

Reducing the energy consumption in wireless networks has become a significant challenge, not only because of its great impact on the global energy crisis, but also because it represents a noteworthy cost for telecommunication operators. The Base Stations (BSs), constituting the main component of wireless infrastructure and the major contributor to the energy consumption of mobile cellular networks, are usually designed and planned to serve their customers during peak times. Therefore, they are more than sufficient when the traffic load is low. In this chapter, the authors propose a number of BSs switching off algorithms as an energy efficient solution to the problem of redundancy of network resources. They demonstrate via analysis and by means of simulations that one can achieve reduction in energy consumption when one switches off the unnecessary BSs. In particular, the authors evaluate the energy that can be saved by progressively turning off BSs during the periods when traffic decreases depending on the traffic load variations and the distance between the BS and their associated User Equipments (UEs). In addition, the authors show how to optimize the energy savings of the network by calculating the most energy-efficient combination of switched off and active BSs.


2020 ◽  
Vol 16 (6) ◽  
pp. 155014772093577
Author(s):  
Zan Yao ◽  
Ying Wang ◽  
Xuesong Qiu

With the rapid development of data centers in smart cities, how to reduce energy consumption and how to raise economic benefits and network performance are becoming an important research subject. In particular, data center networks do not always run at full load, which leads to significant energy consumption. In this article, we focus on the energy-efficient routing problem in software-defined network–based data center networks. For the scenario of in-band control mode of software-defined data centers, we formulate the dual optimal objective of energy-saving and the load balancing between controllers. In order to cope with a large solution space, we design the deep Q-network-based energy-efficient routing algorithm to find the energy-efficient data paths for traffic flow and control paths for switches. The simulation result reveals that the deep Q-network-based energy-efficient routing algorithm only trains part of the states and gets a good energy-saving effect and load balancing in control plane. Compared with the solver and the CERA heuristic algorithm, energy-saving effect of the deep Q-network-based energy-efficient routing algorithm is almost the same as the heuristic algorithm; however, its calculation time is reduced a lot, especially in a large number of flow scenarios; and it is more flexible to design and resolve the multi-objective optimization problem.


2019 ◽  
Vol 2 (1) ◽  
pp. 242-248
Author(s):  
Dariusz Woźniak

Abstract One of the methods for lowering of energy consumption in the drive mechanisms of long horizontal belt conveyors is to reduce belt indentation rolling resistances. These resistances depend on a number of factors: bottom cover properties, bottom cover thickness, belt design, idler diameter, load, speed and frequency at which the belt passes on the idler (indentation frequency), as well as on temperature. Determining how these factors influence indentation rolling resistances of various conveyor belt types is of great importance. The article describes a small-scale method for testing indentation rolling resistance. The method allows analysis of the influence of various factors on indentation rolling resistances. The article presents the results of tests on how belt indentation rolling resistance is influenced by thickness of the belt bottom cover. The tests were performed on belts with various core types.


Resources ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 43 ◽  
Author(s):  
Nena Apostolidou ◽  
Nick Papanikolaou

In this work, the electromechanical system of the 8000-series of Athens trolleybuses, based on data provided by OSY S.A., is analyzed. Those data were used to develop a valid model in order to estimate the total energy consumption of the vehicle under any possible operating conditions. In addition, an effort is made to estimate the energy saving potential if the wasted energy—in the form of heat—during braking or downhill courses is recovered (regenerative braking) and retrofitted during normal operation. This process requires the installation of appropriate electrical apparatus to recover and temporarily store this energy amount. Moreover, due to the fact that the main engine of the system is an asynchronous electric machine, its driving scheme is also of interest. This study assumes the current driving scheme, that is the direct vector control (DVC), and proposes an alternative control method, the direct torque control (DTC). Energy consumption/saving calculations highlight the effectiveness of incorporating regenerative braking infrastructure in trolleybuses transportation systems. Finally, a sustainable hybrid energy storage unit that supports regenerative braking is proposed.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5214 ◽  
Author(s):  
Witold Kawalec ◽  
Natalia Suchorab ◽  
Martyna Konieczna-Fuławka ◽  
Robert Król

Belt conveyor (BC) transportation systems are considered to be the most effective for handling large volumes of bulk material. With regards to the rules of sustainable development, the improvement of belt conveyor technology is, in many cases, focused on environmental issues, which include the idea of energy usage optimization. The key issue in an energy-efficient transportation system is reducing the value of specific energy consumption (SEC) by increasing conveyor capacity whilst decreasing belt conveyor motion resistance. The main idea of this paper is to conduct an analysis of the modernization of existing belt conveyor transportation systems operated in open-pit lignite mines, in order to achieve relatively small electric energy consumption for a considered transportation task. The first part of the paper investigates the relationship between a conveyor’s SEC and material flow rate for various conveyor design parameters. Then, based on multi-parameter simulations, an analysis of electric energy consumption for a belt conveyor transportation system is carried out. Finally, an energy-saving, environmentally friendly solution is presented.


2013 ◽  
Vol 303-306 ◽  
pp. 1460-1464
Author(s):  
Jian Li Pan ◽  
Shan Zhi Chen ◽  
Raj Jain ◽  
Subharthi Paul

Building environments are significant sources of global energy consumption. To create energy efficient buildings, the first step is to sense and monitor all the energy-consuming appliances in the buildings and record all the energy consumption information. After that, appropriate energy saving policies can be decided and the instructions can be sent to the control devices to apply the energy saving adjustments. To do that, in-building two-way communication networks are needed to connect all the sensors to collect information as well as to send control instructions. However, most of the current devices are provided by separate manufacturers and with separate network infrastructures and so there is not much integration and interaction among different subsystems. In this paper, we envision a new energy sensing and monitoring framework with integrated communication backbone in the intelligent building environments. Specifically, through comprehensive comparisons and investigations, we study different candidate communicating media and protocols like wireline, wireless, and power-line communications technologies that potentially can be used in the intelligent buildings to realize the goals of coordination, integration, and energy efficiency. Also, we propose an extension "smart box" for integration of the devices before the maturity of the standardization process. Cloud computing and smart phone technologies are also introduced to realize the goals of improving energy efficiency and promote global sustainability.


Author(s):  
M.V. Rubtsova ◽  
◽  
Е.Е. Semenova

The influence of building plan configurations in relation to their spatial characteristics on their energy consumption is considered. The article substantiates the relevance of the research of space-planning solutions of building forms, taking into account energy efficiency. As the object of research, the authors selected the most common three-dimensional configurations of building forms, taking into account energy efficiency. Examples of the analysis of the main space-planning parameters of the building and the prerequisites for their influence on its heat loss are considered with the provided graphic materials that allow you to find out the dependence of the change in the area of enclosing structures on the change in the floor area. This comparison is carried out in order to determine an energy-efficient and rationally arranged space-planning solution, taking into account the principles of energy saving for the construction of buildings.


2017 ◽  
Vol 15 (2) ◽  
pp. 254-267
Author(s):  
Lu Yan ◽  
Lin Fu-Yan

Purpose As indentation rolling resistance accounts for the major part of the total resistance of belt conveyors, the purpose of this paper is to compute it using a proper method. Design/methodology/approach First, an approximate formula for computing indentation rolling resistance is offered. In this formula, a one-dimensional Winkler foundation and a three-parameter viscoelastic Maxwell solid model of the belt backing material are used to determine the resistance to the motion of a conveyor belt over idlers. The velocity of the belt is an important operating parameter in the working conditions of the belt conveyor. What is more, a set of experimental apparatus which can measure the value of indentation rolling resistance is designed. Findings With the help of the experimental apparatus, the authors obtained a series of measured data under different belt speeds. Finally, a computation example that is provided for a typical rubber compound backing material shows the comparison between measured results and theoretical results which offers the influence of speed on rolling resistance. Originality/value This study provides the design of an apparatus, and finds the relationship between belt speed and indentation rolling resistance.


2012 ◽  
Vol 462 ◽  
pp. 348-352
Author(s):  
Jung Mee Yun ◽  
Dae Hwan Kim

Recent studies have shown that the Internet-related energy consumption represents a significant, and increasing, part of the overall energy consumption of our society. Therefore, it is extremely important to look for energy-efficient Internet applications and protocols. For EPON, research on the development of protocols for higher energy efficiency at the PHY/MAC layers and the enactment of standards, and the improvement of energy efficiency of EPON devices is being conducted, while for networking equipment such as routers and switches and IDCs, research on saving the energy consumed by devices and the management of energy efficiency using power monitoring, cooling devices and metering technologies is being conducted. Against this backdrop, this study is aimed to develop methodology for the improvement of network energy efficiency in existing home/ small and medium-sized office network environments and to develop, test and evaluate an energy saving prototype for Convergence Adaptor


Sign in / Sign up

Export Citation Format

Share Document