scholarly journals Accelerated Laboratory Testing for Reflective Cracking

2021 ◽  
Vol 10 (1) ◽  
pp. 34-49
Author(s):  
Mihai Gabriel Lobază

Abstract One of the most used methods of rehabilitation of road structures is the laying of a protective asphalt layer over a degraded concrete. The main problem of this solution is the reflective cracking, more precisely the transmission of the existing cracks in the lower layer in the asphalt pavement. The method presented in this article involves an accelerated laboratory test on specimens composed of a pre-cracked concrete slab over which an asphalt slab is glued, subjected to equivalent traffic loads. This test allows the observation of the crack propagation from the lower layer to the upper layer, until it yields, through parameters such as deformed specimen, opening and length of the crack in asphalt, but also the opening of the existing crack in concrete, relative to the number of cycles. By relating these parameters, important conclusions can be drawn about the behavior of the composite structure at reflective cracking, being able to choose the optimal recipe of the protective asphalt layer.

Author(s):  
Cristian Cocconcelli ◽  
Bongsuk Park ◽  
Jian Zou ◽  
George Lopp ◽  
Reynaldo Roque

Reflective cracking is frequently reported as the most common distress affecting resurfaced pavements. An asphalt rubber membrane interlayer (ARMI) approach has been traditionally used in Florida to mitigate reflective cracking. However, recent field evidence has raised doubts about the effectiveness of the ARMI when placed near the surface, indicating questionable benefits to reflective cracking and increased instability rutting potential. The main purpose of this research was to develop guidelines for an effective alternative to the ARMI for mitigation of near-surface reflective cracking in overlays on asphalt pavement. Fourteen interlayer mixtures, covering three aggregate types widely used in Florida, and two nominal maximum aggregate sizes (NMAS) were designed according to key characteristics identified for mitigation of reflective cracking, that is, sufficient gradation coarseness and high asphalt content. The dominant aggregate size range—interstitial component (DASR-IC) model was used for the design of all mixture gradations. A composite specimen interface cracking (CSIC) test was employed to evaluate reflective cracking performance of interlayer systems. In addition, asphalt pavement analyzer (APA) tests were performed to determine whether the interlayer mixtures had sufficient rutting resistance. The results indicated that interlayer mixtures designed with lower compaction effort, reduced design air voids, and coarser gradation led to more cost-effective fracture-tolerant and shear-resistant (FTSR) interlayers. Therefore, preliminary design guidelines including minimum effective film thickness and maximum DASR porosity requirements were proposed for 9.5-mm NMAS (35 µm and 50%) and 4.75-mm NMAS FTSR mixtures (20 µm and 60%) to mitigate near-surface reflective cracking.


Author(s):  
Sarah Jane Blick ◽  
Chris West

Tame Valley Viaduct is a 620m long multi-span highway structure linking Birmingham city centre to the M6 motorway. An assessment in 2004 found the capacity of the structure to be inadequate for current loading, resulting in a requirement for strengthening. Before strengthening works were designed, a comprehensive, refined re-assessment of the structure was undertaken to fully define which areas needed strengthening and which did not. The composite structure comprises a reinforced-concrete slab and typically four longitudinal steel box girders. Each of these longitudinal girders comprises approximately 600 sets of web and flange panels. The scale of the task required automation of the assessment and design process. This paper discusses how the automation was undertaken including the preparation of models to calculate individual panel loading, assessment of the web and flange panels, and the checking of strengthening solutions.


2021 ◽  
Vol 878 (1) ◽  
pp. 012052
Author(s):  
H Ndruru ◽  
R M Simanjuntak ◽  
S P Tampubolon

Abstract The rigid pavement is a pavement construction in which a concrete slab is used as the top layer, which is located above the foundation or directly above the subgrade, without or with an asphalt surface layer. One type of rigid pavement used in Indonesia is rigid pavement without using reinforcement which is usually used in areas with low traffic or residential areas. Pavement without using reinforcement is the small split tensile strength so that the part of the plate will experience cracks due to stresses that cannot be avoided from traffic loads. Therefore, it is necessary to have reinforcement on the concrete slab so that the cracks do not extend. In this research, the use of copper fiber waste from electronic cables as a substitute solution for reinforcement to be used as a mixture in concrete. The experiments were carried out using fiber with variations of 0%, 0.5%, 1%, and 1.5% of the total weight of concrete mixture material and then tested at 28 days of concrete age. This research showed the variation of fiber weight until 1,5% increase the split tensile strength up to 32,46% and the compressive strength up to 9,16%.


2013 ◽  
Vol 361-363 ◽  
pp. 1727-1734
Author(s):  
Meng Qi Gao ◽  
Ping Ying Wang ◽  
He Ping Ding

To study the fatigue life of asphalt pavement under traffic loads, a 3-D finite element analysis (FEA) Visio-elastic road model was established on the layered theory with ANSYS software. The fatigue damage was calculated with the maximum horizontal tensile strain of asphalt layer bottom based on the fatigue fracture mechanics, when single axis went across. Then the fatigue life was obtained after the fatigue damage occurred in some degree by the Miners linear cumulative damage rule. The results show that it taken 3.4 years when the damage area reached 10% of wheel path area, and 4.5years when reached 45%; while the calculated result was 5.5 years by axial-load conversion method. The analysis shows that the fatigue life of asphalt pavement calculated by fatigue fracture mechanics rule has more significance in practice.


2020 ◽  
Vol 310 ◽  
pp. 00059
Author(s):  
Sergej Priganc

The article deals with crack formation of concrete slabs embedded along two sides, after monitoring the shrinking of concrete slabs under laboratory conditions. The paper presents result of laboratory test focused on monitoring the crack formation of concrete slabs. The concrete slabs were reinforced asymmetrically only on one side. The slabs were loaded by four-point bending. The formation and development of cracks was monitored during loading of concrete slabs. The deflections on the concrete slab were measured and the formation of cracks and the width of the cracks were monitored. The position of the cracks on the concrete slab was checked and compared with the position of the transverse reinforcement.


2019 ◽  
Vol 271 ◽  
pp. 07002 ◽  
Author(s):  
Mohammad Bhuyan ◽  
Mohammad Khattak ◽  
Qian Zhang ◽  
Emilee Schlader

Reflective cracking at transverse joints is considered as a predominant distress in composite pavements. Various interlayers have been used previously to prevent or retard reflective cracking. Engineered cementitious composite (ECC) is a special type of high-performance fiber-reinforced cementitious material that is expected to perform better as an interlayer due to its higher tensile strength and ductility. This study aims to evaluate the effectiveness of ECC as an interlayer system experimentally. A laboratory test protocol was designed to simulate repeated traffic loads to measure the fatigue performance of ECC interlayer system using digital image correlation (DIC) technique. It was found that the composite pavement specimens with ECC interlayer provided significantly higher fatigue life as compared to the control specimens without interlayer. This result indicates that ECC could be used as a potential effective interlayer system to retard or mitigate reflective cracking.


2011 ◽  
Vol 467-469 ◽  
pp. 1550-1555
Author(s):  
Ming Yu Chen ◽  
Shao Peng Wu ◽  
Ji Zhe Zhang ◽  
Pan Pan

Asphalt pavement can be used in solar energy harnessing, by means of solar collector developed in heating and cooling the adjacent buildings, as well as keeping the pavement ice-free directly. In the light of the actual situation of preparation and formation of a larger asphalt concrete slab, an experimental method and evaluation system for asphalt pavement snow melting was designed and constructed. The feasibility of snow melting using asphalt solar collector was verified, and the effect of the heat exchanger on the temperature distribution was quantitatively tested The results indicated that although the entire snowmelt time is longer than expected, it is acceptable for us to use asphalt solar collector for snow melting, especially, low temperature water about 25°C is used for snow melting. Besides, the melting process of ice and snow generally includes three phases: the starting period, the linear period and the accelerated period. The snow melting system is controlled to maintain the asphalt pavement surface temperature of 3 to 5°C which is sufficient to prevent freezing of the road.


2013 ◽  
Vol 351-352 ◽  
pp. 695-698
Author(s):  
Lei Wang ◽  
Hong Ya Zhang

Reinforced Concrete Slab is one of the important types of composite structure, About the concrete laminated slab of the research and the engineering application are summarized, Point out that the characteristics of Composite Concrete Slabs, the application and development of the laminated slab of recent advances at home and abroad, and look into the future of the Composite Concrete Slabs research.


Sign in / Sign up

Export Citation Format

Share Document