scholarly journals Study Into the Changes in Soil Organic Matter, Caused By Laboratory Simulated Fires in Four Slovak Soils 1. UV-VIS Spectrum Analysis

Author(s):  
Maroš Sirotiak ◽  
Alica Pastierová ◽  
Lenka Blinová

Abstract The study was focused on describing ultraviolet-visible spectra of the humic substances, humic acids and fulvic acids isolated from four Slovak soils. The samples were heated in a laboratory furnace, to simulate soil behaviour during fires. The absorbances at the wavelengths corresponding to the selected chromophores and specific wavelength for groups of substances were compared. Analysis of the UV -VIS spectra of the extracted humic substances may indicate the directions of interest in the changes in soil organic matter, along with the changes in external conditions, such as natural fires.

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1067
Author(s):  
Aleksandra Ukalska-Jaruga ◽  
Romualda Bejger ◽  
Guillaume Debaene ◽  
Bożena Smreczak

The objective of this paper was to investigate the molecular characterization of soil organic matter fractions (humic substances (HS): fulvic acids-FAs, humic acids-HAs, and humins-HNs), which are the most reactive soil components. A wide spectrum of spectroscopic (UV–VIS and VIS–nearIR), as well as electrochemical (zeta potential, particle size diameter, and polydispersity index), methods were applied to find the relevant differences in the behavior, formation, composition, and sorption properties of HS fractions derived from various soils. Soil material (n = 30) used for the study were sampled from the surface layer (0–30 cm) of agricultural soils. FAs and HAs were isolated by sequential extraction in alkaline and acidic solutions, according to the International Humic Substances Society method, while HNs was determined in the soil residue (after FAs and HAs extraction) by mineral fraction digestion using a 0.1M HCL/0.3M HF mixture and DMSO. Our study showed that significant differences in the molecular structures of FAs, Has, and HNs occurred. Optical analysis confirmed the lower molecular weight of FAs with high amount of lignin-like compounds and the higher weighted aliphatic–aromatic structure of HAs. The HNs were characterized by a very pronounced and strong condensed structure associated with the highest molecular weight. HAs and HNs molecules exhibited an abundance of acidic, phenolic, and amine functional groups at the aromatic ring and aliphatic chains, while FAs mainly showed the presence of methyl, methylene, ethenyl, and carboxyl reactive groups. HS was characterized by high polydispersity related with their structure. FAs were characterized by ellipsoidal shape as being associated to the long aliphatic chains, while HAs and HNs revealed a smaller particle diameter and a more spherical shape caused by the higher intermolecular forcing between the particles. The observed trends directly indicate that individual HS fractions differ in behavior, formation, composition, and sorption properties, which reflects their binding potential to other molecules depending on soil properties resulting from their type. The determined properties of individual HS fractions are presented as averaged characteristics over the examined soils with different physico-chemical properties.


2014 ◽  
Vol 2 ◽  
Author(s):  
Carolina Vázquez ◽  
Laura Noe ◽  
Adriana Abril ◽  
Carolina Merlo ◽  
Carlos Romero ◽  
...  

This short communication presents a novel approach to determining the soil sustainability of productive practices in an Argentinean arid region, using the resilience degree of soil organic matter components. The study was conducted in four sites of the Arid Chaco region of the Cordoba province: one undisturbed site, two sites with livestock (with total and with selective clearing) and one site with agriculture. In each site three soil samples were taken and total soil organic matter, fulvic and humic acids, and non-humic substances were analyzed. Variations of each component (%) between each productive practice and the undisturbed site were calculated in order to establish the resilience degree. The livestock soils showed: a) moderate resilience for non-humic substances, b) low resilience for organic matter and humic acids, and c) no resilience for fulvic acids. The agricultural soils showed: a) low resilience for total organic matter and non-humic substances, and b) no resilience for fulvic and humic acids. We conclude that this approach is a powerful tool for establishing management practices according to each particular situation, allowing improved productivity in arid regions.


2011 ◽  
Vol 35 (5) ◽  
pp. 1597-1608 ◽  
Author(s):  
Gislane M. de Moraes ◽  
Francisco Alisson da Silva Xavier ◽  
Eduardo de Sá Mendonça ◽  
João Ambrósio de Araújo Filho ◽  
Teógenes Senna de Oliveira

Studies have proven that the agroforestry systems in the semi-arid region of the State of Ceará, Brazil, induce an increase in soil organic C levels. Notwithstanding, there is no information if this increase also results in qualitative changes in different pools of soil organic matter. The objective of this study was to verify the possible chemical and structural alterations in fulvic and humic acids of a Luvisol in areas adopting agroforestry, traditional intensive cultivation and native forest in a long-term experiment conducted in the semi-arid region of Ceará State, Brazil. The study was conducted in an experimental area of the National Goat Research Center (Embrapa) in Sobral, CE. The following treatments were evaluated: agrosilvopasture (AGP), silvopasture (SILV), intensive cultivation under fallow (ICF), and areas with native forest (NF). Soil fulvic and humic acids fractions were extracted from the 0-6 and 6-12 cm layers and characterized by elemental composition, thermogravimetry and infrared spectroscopy analyses. The elemental composition analysis of humic acids confirmed the data found for fulvic acids, showing reduction in the C, H and N levels, followed by an increase in O contents in the AGP and ICF treatments over SILV and NF. In all treatments, except to SILV in the 0-6 cm layer, the percentage of mass loss was highest (300-600 °C) for humic acids in the thermally most stable region. Despite the similarity between infrared spectra, soil fulvic acids in the SILV treatment extracted from 6-12 cm depth decrease the absorption bands at 1708 and 1408 cm-1 followed by an increase in the absorption band at 1608 cm-1 attributed to aromatic C=C groups. This behavior suggests an increase in the aromatic character of the structure. The AGP and ICF treatments, which increase the soil tilling, favored the maintenance of humic substances with a more aromatic character in the soil than SILV and NF. The less aromatic humic substances in the SILV treatment resulted in an increase of exchange sites of soil organic matter, indicating improved nutrient cycling and maintenance of productivity in the system.


2021 ◽  
Vol 11 (18) ◽  
pp. 8466
Author(s):  
Christian Millo ◽  
Carlo Bravo ◽  
Stefano Covelli ◽  
Elena Pavoni ◽  
Elisa Petranich ◽  
...  

The Cananéia-Iguape estuarine–lagoon complex (São Paulo state, Brazil) is a natural laboratory to study metal binding by humic substances (HS) in subtropical settings. This transitional environment is evolving into a freshwater environment due to water input from the Ribeira River, funneled through the Valo Grande Canal (Iguape). Past mining activities in the Ribeira River basin and maritime traffic are suspected to be potential sources of trace metals in the system. In this study, the trace metal contents of Free Humic Acids (FHA), Bound Humic Acids (BHA), and Fulvic Acids (FA) extracted from sedimentary organic matter were investigated. Moreover, the sources of HS were traced using their stable carbon isotope compositions and C/N ratios. The results suggested a mixed marine–terrestrial source of FHA, BHA, and FA. Copper and Cr were the most abundant trace metals bound to HS. On average, Cu showed concentrations of 176, 115, and 37.9 μg g−1 in FHA, BHA, and FA, respectively, whereas Cr showed average concentrations of 47.4, 86.3, and 43.9 μg g−1 in FHA, BHA, and FA, respectively. Marine FHA showed the highest binding capacity for trace metals, whereas terrestrial FA derived from the decay of mangrove organic matter showed the lowest binding capacity.


2015 ◽  
Vol 2 (1) ◽  
pp. 73-78
Author(s):  
A. Fateev ◽  
D. Semenov ◽  
K. Smirnova ◽  
A. Shemet

Soil organic matter is known as an important condition for the mobility of trace elements in soils, their geo- chemical migration and availability to plants. However, various components of soil organic matter have differ- ent effect on these processes due to their signifi cant differences in structure and properties. Aim. To establish the role of humic and fulvic acids in the process of formation of microelement mobility in soils and their accu- mulation in plants. Methods. A model experiment with sand culture was used to investigate the release of trace elements from preparations of humic and fulvic acids and their uptake by oat plants. Results. It was found that among biologically needed elements humic acids are enriched with iron, fulvic acids – with zinc, and copper distribution between these two groups of substances may be characterized as even. These elements have un- equal binding power with components of soil organic matter, as evidenced by their release into the cultivation medium and accumulation in plants. In the composition of fulvic acids zink has the most mobility – up to 95 % of this element is in the form, accessible for plants; the lowest mobility was demonstrated by copper in the composition with humic acids, for which no signifi cant changes in the concentration of mobile forms in the substrate and in the introduction to the test culture were registered. Despite signifi cantly higher iron content in humic acids, the application of fulvic acids in the cultivation medium provides a greater increase in the con- centration of mobile forms of this element. Conclusions. The results confi rm the important role of organic sub- stances of fulvic nature in the formation of zinc and iron mobility in the soil and their accumulation in plants.


1977 ◽  
Vol 57 (3) ◽  
pp. 375-377 ◽  
Author(s):  
Y. A. MARTEL ◽  
P. LASALLE

Radiocarbon dating was used to determine the mean residence time of the organic matter from a Gleysolic Ap horizon of eastern Canada. The total soil organic matter and the fulvic acids dated modern, the humic acids as 1,220 ± 150 yr B.P. and the humin as 180 ± 100 yr B.P. Acid hydrolysis of the total soil organic matter yielded a soluble fraction dating modern and an unhydrolyzed material dating 1,530 ± 110 yr B.P. Acid hydrolysis of this topsoil appears practical to separate the soil organic matter into two fractions of different stability. Fractionation into fulvic, humic acids and humin may help to give information on the dynamics of the soil organic matter by separating the soil into at least three fractions of varying stability.


2011 ◽  
Vol 49 (No. 12) ◽  
pp. 565-571 ◽  
Author(s):  
G. Barančíková ◽  
J. Makovníková

Mobile and potentially mobile forms of heavy metals are probably one of the most important toxic hazards in the environment. Besides pH, which is a factor influencing the mobility/availability of heavy metals to the greatest extent, the content and mainly the quality of soil organic matter play a very important role in the evaluation of heavy metal behaviour in the environment. The fraction of metals bound to organic compounds is exclusively associated with humic substances and particularly with humic acids (HA). A relationship between the parameters reflecting the actual structure of humic acids and mobile or potentially mobile fractions of heavy metals was studied in 12 soil localities representing different soil types. It can be stated on the basis of the acquired data that heavy metals tend to form complexes with soil organic matter that are different for each metal. The results suggest that copper is bound mainly in an unavailable form (significant correlations of fraction IV with HA parameters) and cadmium prefers exchangeable forms (significant correlations of fraction I with HA parameters) and is more available. It can be assumed on the basis Spearman’s correlations that mobile fractions of cadmium are predominantly bound to the aliphatic part of humic substances, and copper prefers strong bonds to humic acids with a high degree of humification.


2019 ◽  
Vol 80 ◽  
pp. 03002
Author(s):  
Maria Elisabete Silva ◽  
Marlene Santos ◽  
Isabel Brás

This study aimed to characterize the humic substances (HS) extracted from landfills wastewater – leachates, with different ages of exploration. To reach the objective it was applied spectroscopy techniques, UV-Vis and FTIR spectra, as well as the ratio between the absorbance analysed. First, the HS were extracted, then fractionated in fulvic acids (FA) and humic acids (HA) and it was evaluated the phytotoxicity. HS content in the leachates were higher than the typical values found in the natural aquatic humic sources. It has been identified that the leachate HS, HA and FA aromatic fractions increased with the increase of the landfilling age, suggesting that the degree of humification increased with the landfilling age. All the HS showed a high aromaticity and humification degree. The HS extracts irrespective of their source presents similar structural composition. The functional groups found are in agreement with the literature: phenols, alcohols, carboxylic groups, aliphatic structures, among others. It was found that HA are mainly organic matter with a higher aromatic degree than FA. The HS and HA showed absence of phytotoxicity, testing by germination index, suggesting that may be used to produce liquid organic fertilizers.


2010 ◽  
Vol 34 (4) ◽  
pp. 1041-1048 ◽  
Author(s):  
Claudivan Costa Lima ◽  
Eduardo de Sá Mendonça ◽  
Asunción Roig

The contribution of humic substances of different composts to the synthesis of humin in a tropical soil was evaluated. Increasing doses (0, 13, 26, 52, and 104 Mg ha-1) of five different composts consisting of agroinpowderrial residues were applied to a Red-Yellow Latosol. These composts were chemically characterized and 13C NMR determined and the quantity of the functional alkyl groups of humic acids applied to the soil as compost was estimated. Thirty days after application of the treatments, organic matter samples were collected for fractionation of humic acids (HA), fulvic acids (FA) and humin (HU), from which the ratios HA/FA and (HA + FA)/HU were calculated. The application of the composts based on castor cake resulted in the highest HU levels in the soil; alkyl groups of the HA fraction of the composts were predominant in the organic components added to the HU soil fraction.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anna Ziolkowska ◽  
Bozena Debska ◽  
Magdalena Banach-Szott

Abstract The aim of the research has been to determine the role of phenolic compounds in the processes of transformations of organic matter in meadow soils, leading to the formation of humic substances. The research has been performed based on the plant material and soil sampled from Europe’s unique complex of permanent grasslands irrigated continuously for 150 years applying the slope-and-flooding system, the Czerskie Meadows. Phenolic compounds were isolated from the plant material samples (hay, sward and roots) and soils (horizon A, AE and Bsv) and from the fraction of humic and fulvic acids. It was found that the contents of phenolic compounds decrease in the following order: hay > sward > roots > A horizon soil > AE horizon soil > Bsv horizon soil > A horizon fulvic acids > AE horizon fulvic acids > Bsv horizon fulvic acids > A horizon fulvic acids > AE horizon fulvic acids > Bsv horizon fulvic acids. A significantly higher share of cinnamyl than vanillyl and syringyl compounds in the extracts of fulvic acids and slightly higher in the hydrolysates of humic acids confirms the effect of the chemical composition of the plant material undergoing decomposition on the properties of the emerging humic substances.


Sign in / Sign up

Export Citation Format

Share Document