scholarly journals The influence of humic acid quality on the sorption and mobility of heavy metals

2011 ◽  
Vol 49 (No. 12) ◽  
pp. 565-571 ◽  
Author(s):  
G. Barančíková ◽  
J. Makovníková

Mobile and potentially mobile forms of heavy metals are probably one of the most important toxic hazards in the environment. Besides pH, which is a factor influencing the mobility/availability of heavy metals to the greatest extent, the content and mainly the quality of soil organic matter play a very important role in the evaluation of heavy metal behaviour in the environment. The fraction of metals bound to organic compounds is exclusively associated with humic substances and particularly with humic acids (HA). A relationship between the parameters reflecting the actual structure of humic acids and mobile or potentially mobile fractions of heavy metals was studied in 12 soil localities representing different soil types. It can be stated on the basis of the acquired data that heavy metals tend to form complexes with soil organic matter that are different for each metal. The results suggest that copper is bound mainly in an unavailable form (significant correlations of fraction IV with HA parameters) and cadmium prefers exchangeable forms (significant correlations of fraction I with HA parameters) and is more available. It can be assumed on the basis Spearman’s correlations that mobile fractions of cadmium are predominantly bound to the aliphatic part of humic substances, and copper prefers strong bonds to humic acids with a high degree of humification.

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1067
Author(s):  
Aleksandra Ukalska-Jaruga ◽  
Romualda Bejger ◽  
Guillaume Debaene ◽  
Bożena Smreczak

The objective of this paper was to investigate the molecular characterization of soil organic matter fractions (humic substances (HS): fulvic acids-FAs, humic acids-HAs, and humins-HNs), which are the most reactive soil components. A wide spectrum of spectroscopic (UV–VIS and VIS–nearIR), as well as electrochemical (zeta potential, particle size diameter, and polydispersity index), methods were applied to find the relevant differences in the behavior, formation, composition, and sorption properties of HS fractions derived from various soils. Soil material (n = 30) used for the study were sampled from the surface layer (0–30 cm) of agricultural soils. FAs and HAs were isolated by sequential extraction in alkaline and acidic solutions, according to the International Humic Substances Society method, while HNs was determined in the soil residue (after FAs and HAs extraction) by mineral fraction digestion using a 0.1M HCL/0.3M HF mixture and DMSO. Our study showed that significant differences in the molecular structures of FAs, Has, and HNs occurred. Optical analysis confirmed the lower molecular weight of FAs with high amount of lignin-like compounds and the higher weighted aliphatic–aromatic structure of HAs. The HNs were characterized by a very pronounced and strong condensed structure associated with the highest molecular weight. HAs and HNs molecules exhibited an abundance of acidic, phenolic, and amine functional groups at the aromatic ring and aliphatic chains, while FAs mainly showed the presence of methyl, methylene, ethenyl, and carboxyl reactive groups. HS was characterized by high polydispersity related with their structure. FAs were characterized by ellipsoidal shape as being associated to the long aliphatic chains, while HAs and HNs revealed a smaller particle diameter and a more spherical shape caused by the higher intermolecular forcing between the particles. The observed trends directly indicate that individual HS fractions differ in behavior, formation, composition, and sorption properties, which reflects their binding potential to other molecules depending on soil properties resulting from their type. The determined properties of individual HS fractions are presented as averaged characteristics over the examined soils with different physico-chemical properties.


2014 ◽  
Vol 2 ◽  
Author(s):  
Carolina Vázquez ◽  
Laura Noe ◽  
Adriana Abril ◽  
Carolina Merlo ◽  
Carlos Romero ◽  
...  

This short communication presents a novel approach to determining the soil sustainability of productive practices in an Argentinean arid region, using the resilience degree of soil organic matter components. The study was conducted in four sites of the Arid Chaco region of the Cordoba province: one undisturbed site, two sites with livestock (with total and with selective clearing) and one site with agriculture. In each site three soil samples were taken and total soil organic matter, fulvic and humic acids, and non-humic substances were analyzed. Variations of each component (%) between each productive practice and the undisturbed site were calculated in order to establish the resilience degree. The livestock soils showed: a) moderate resilience for non-humic substances, b) low resilience for organic matter and humic acids, and c) no resilience for fulvic acids. The agricultural soils showed: a) low resilience for total organic matter and non-humic substances, and b) no resilience for fulvic and humic acids. We conclude that this approach is a powerful tool for establishing management practices according to each particular situation, allowing improved productivity in arid regions.


2015 ◽  
Vol 2 (1) ◽  
pp. 73-78
Author(s):  
A. Fateev ◽  
D. Semenov ◽  
K. Smirnova ◽  
A. Shemet

Soil organic matter is known as an important condition for the mobility of trace elements in soils, their geo- chemical migration and availability to plants. However, various components of soil organic matter have differ- ent effect on these processes due to their signifi cant differences in structure and properties. Aim. To establish the role of humic and fulvic acids in the process of formation of microelement mobility in soils and their accu- mulation in plants. Methods. A model experiment with sand culture was used to investigate the release of trace elements from preparations of humic and fulvic acids and their uptake by oat plants. Results. It was found that among biologically needed elements humic acids are enriched with iron, fulvic acids – with zinc, and copper distribution between these two groups of substances may be characterized as even. These elements have un- equal binding power with components of soil organic matter, as evidenced by their release into the cultivation medium and accumulation in plants. In the composition of fulvic acids zink has the most mobility – up to 95 % of this element is in the form, accessible for plants; the lowest mobility was demonstrated by copper in the composition with humic acids, for which no signifi cant changes in the concentration of mobile forms in the substrate and in the introduction to the test culture were registered. Despite signifi cantly higher iron content in humic acids, the application of fulvic acids in the cultivation medium provides a greater increase in the con- centration of mobile forms of this element. Conclusions. The results confi rm the important role of organic sub- stances of fulvic nature in the formation of zinc and iron mobility in the soil and their accumulation in plants.


2013 ◽  
Vol 5 (2) ◽  
pp. 01-09
Author(s):  
M Akter ◽  
AK Chowdhury ◽  
MAH Chowdhury

A study was undertaken to evaluate the status of organic matter, mineral nutrients and heavy metals content in seven differentsoils from fourteen selected regions of Bangladesh. The location were BAU farm, Sutiakhali, Ishardi, Lalpur, Dumuria,Kotalipara, Asasuni, Chorfasion, Kaligonj, Botiaghata, Madhupur, Tangail sadar, Chakaria and Moheskhali. Forty two surfacesoils (0-15 cm depth) were collected from 14 regions (3 samples from each region) of Bangladesh during November-December,2009. The results obtained from this study showed that the organic matter of these soils very low to very high (0.65% inMadhupur to 28.24% in Dumuria) and the total N content of soil followed the same trend of organic matter ranging 0.056 to1.638% in Madhupur and Dumuria region, respectively. The available P and S in the top of soils ranged from 3.77 ?g g-1 in Moheskhali to 17.28 ?g g-1 in BAU farm and 13.40 ?g g-1 in Madhupur to 420.32 ?g g-1 in Moheskhali, respectively. In the contextof micro nutrients, the maximum available Zn, Cu, Fe and Mn were found 6.43 ?g g-1 in Dumuria, 8.06 ?g g-1 in Chakaria, 346.12?g g-1 in Madhupur and 83.5 ?g g-1 in Madhupur, respectively. whereas the lowest amount of these micronutrients were found 1.22?g g-1 in Botiaghata, 0.2 ?g g-1 in Dumuria, 7.62 ?g g-1 in Ishardi and 2.39 ?g g-1 in Lalpur, respectively. Possible contamination ofthe studied soils by heavy metals was not significantly observed. The OM, total N and other nutrients were found to be the dominantfactors influencing not only the availability of macro and micro nutrients and heavy metals but also the quality of soil.DOI: http://dx.doi.org/10.3329/jesnr.v5i2.14570 J. Environ. Sci. & Natural Resources, 5(2): 01-09 2012


2011 ◽  
Vol 35 (5) ◽  
pp. 1597-1608 ◽  
Author(s):  
Gislane M. de Moraes ◽  
Francisco Alisson da Silva Xavier ◽  
Eduardo de Sá Mendonça ◽  
João Ambrósio de Araújo Filho ◽  
Teógenes Senna de Oliveira

Studies have proven that the agroforestry systems in the semi-arid region of the State of Ceará, Brazil, induce an increase in soil organic C levels. Notwithstanding, there is no information if this increase also results in qualitative changes in different pools of soil organic matter. The objective of this study was to verify the possible chemical and structural alterations in fulvic and humic acids of a Luvisol in areas adopting agroforestry, traditional intensive cultivation and native forest in a long-term experiment conducted in the semi-arid region of Ceará State, Brazil. The study was conducted in an experimental area of the National Goat Research Center (Embrapa) in Sobral, CE. The following treatments were evaluated: agrosilvopasture (AGP), silvopasture (SILV), intensive cultivation under fallow (ICF), and areas with native forest (NF). Soil fulvic and humic acids fractions were extracted from the 0-6 and 6-12 cm layers and characterized by elemental composition, thermogravimetry and infrared spectroscopy analyses. The elemental composition analysis of humic acids confirmed the data found for fulvic acids, showing reduction in the C, H and N levels, followed by an increase in O contents in the AGP and ICF treatments over SILV and NF. In all treatments, except to SILV in the 0-6 cm layer, the percentage of mass loss was highest (300-600 °C) for humic acids in the thermally most stable region. Despite the similarity between infrared spectra, soil fulvic acids in the SILV treatment extracted from 6-12 cm depth decrease the absorption bands at 1708 and 1408 cm-1 followed by an increase in the absorption band at 1608 cm-1 attributed to aromatic C=C groups. This behavior suggests an increase in the aromatic character of the structure. The AGP and ICF treatments, which increase the soil tilling, favored the maintenance of humic substances with a more aromatic character in the soil than SILV and NF. The less aromatic humic substances in the SILV treatment resulted in an increase of exchange sites of soil organic matter, indicating improved nutrient cycling and maintenance of productivity in the system.


Author(s):  
Maroš Sirotiak ◽  
Alica Pastierová ◽  
Lenka Blinová

Abstract The study was focused on describing ultraviolet-visible spectra of the humic substances, humic acids and fulvic acids isolated from four Slovak soils. The samples were heated in a laboratory furnace, to simulate soil behaviour during fires. The absorbances at the wavelengths corresponding to the selected chromophores and specific wavelength for groups of substances were compared. Analysis of the UV -VIS spectra of the extracted humic substances may indicate the directions of interest in the changes in soil organic matter, along with the changes in external conditions, such as natural fires.


2018 ◽  
Author(s):  
C. Coy ◽  
A.V. Shuravilin ◽  
O.A. Zakharova

Приведены результаты исследований по изучению влияния промышленной технологии возделывания картофеля на развитие, урожайность и качество продукции. Выявлена положительная реакция растений на подкормку K2SO4 в период посадки. Корреляционно-регрессионный анализ урожайности и качества клубней выявил высокую степень достоверности результатов опыта. Содержание нитратов и тяжелых металлов в клубнях было ниже допустимых величин.The results of studies on the impact of industrial technology of potato cultivation on growth, yield and quality of products. There was a positive response of plants to fertilizer K2SO4 in the period of planting. Correlation and regression analysis of yield and quality of tubers revealed a high degree of reliability of the results of experience. The contents of nitrates and heavy metals in tubers was below the permissible values.


Sign in / Sign up

Export Citation Format

Share Document