RADIOCARBON DATING OF ORGANIC MATTER FROM A CULTIVATED TOPSOIL IN EASTERN CANADA

1977 ◽  
Vol 57 (3) ◽  
pp. 375-377 ◽  
Author(s):  
Y. A. MARTEL ◽  
P. LASALLE

Radiocarbon dating was used to determine the mean residence time of the organic matter from a Gleysolic Ap horizon of eastern Canada. The total soil organic matter and the fulvic acids dated modern, the humic acids as 1,220 ± 150 yr B.P. and the humin as 180 ± 100 yr B.P. Acid hydrolysis of the total soil organic matter yielded a soluble fraction dating modern and an unhydrolyzed material dating 1,530 ± 110 yr B.P. Acid hydrolysis of this topsoil appears practical to separate the soil organic matter into two fractions of different stability. Fractionation into fulvic, humic acids and humin may help to give information on the dynamics of the soil organic matter by separating the soil into at least three fractions of varying stability.

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1067
Author(s):  
Aleksandra Ukalska-Jaruga ◽  
Romualda Bejger ◽  
Guillaume Debaene ◽  
Bożena Smreczak

The objective of this paper was to investigate the molecular characterization of soil organic matter fractions (humic substances (HS): fulvic acids-FAs, humic acids-HAs, and humins-HNs), which are the most reactive soil components. A wide spectrum of spectroscopic (UV–VIS and VIS–nearIR), as well as electrochemical (zeta potential, particle size diameter, and polydispersity index), methods were applied to find the relevant differences in the behavior, formation, composition, and sorption properties of HS fractions derived from various soils. Soil material (n = 30) used for the study were sampled from the surface layer (0–30 cm) of agricultural soils. FAs and HAs were isolated by sequential extraction in alkaline and acidic solutions, according to the International Humic Substances Society method, while HNs was determined in the soil residue (after FAs and HAs extraction) by mineral fraction digestion using a 0.1M HCL/0.3M HF mixture and DMSO. Our study showed that significant differences in the molecular structures of FAs, Has, and HNs occurred. Optical analysis confirmed the lower molecular weight of FAs with high amount of lignin-like compounds and the higher weighted aliphatic–aromatic structure of HAs. The HNs were characterized by a very pronounced and strong condensed structure associated with the highest molecular weight. HAs and HNs molecules exhibited an abundance of acidic, phenolic, and amine functional groups at the aromatic ring and aliphatic chains, while FAs mainly showed the presence of methyl, methylene, ethenyl, and carboxyl reactive groups. HS was characterized by high polydispersity related with their structure. FAs were characterized by ellipsoidal shape as being associated to the long aliphatic chains, while HAs and HNs revealed a smaller particle diameter and a more spherical shape caused by the higher intermolecular forcing between the particles. The observed trends directly indicate that individual HS fractions differ in behavior, formation, composition, and sorption properties, which reflects their binding potential to other molecules depending on soil properties resulting from their type. The determined properties of individual HS fractions are presented as averaged characteristics over the examined soils with different physico-chemical properties.


Radiocarbon ◽  
2001 ◽  
Vol 43 (2B) ◽  
pp. 595-601 ◽  
Author(s):  
L C R Pessenda ◽  
S E M Gouveia ◽  
R Aravena

During the last decade radiocarbon dating has been used extensively in distinct regions of Brazil to provide information about soil chronology in paleoenvironmental studies. This paper presents 14C data of soil organic matter (SOM), humin fraction, and charcoal in several soil profiles under natural vegetation from different Brazil locations (north, central, and southeast regions). The main objective is to compare the obtained 14C dating of total SOM with humin, the oldest fraction of SOM. In order to validate the humin ages these data are compared with the age of charcoal collected at similar depths. The 14C ages obtained on charcoal were, in most of the cases, in agreement with the humin fraction considering the experimental errors, or 20% older in average. The dates obtained from total SOM showed significantly younger ages than the humin fraction indicating contamination by younger carbon. These results show the humin fraction is considered a reliable material for 14C dating in soils. However, the humin fraction ages could be assumed as the minimum ages for carbon in soils.


2014 ◽  
Vol 2 ◽  
Author(s):  
Carolina Vázquez ◽  
Laura Noe ◽  
Adriana Abril ◽  
Carolina Merlo ◽  
Carlos Romero ◽  
...  

This short communication presents a novel approach to determining the soil sustainability of productive practices in an Argentinean arid region, using the resilience degree of soil organic matter components. The study was conducted in four sites of the Arid Chaco region of the Cordoba province: one undisturbed site, two sites with livestock (with total and with selective clearing) and one site with agriculture. In each site three soil samples were taken and total soil organic matter, fulvic and humic acids, and non-humic substances were analyzed. Variations of each component (%) between each productive practice and the undisturbed site were calculated in order to establish the resilience degree. The livestock soils showed: a) moderate resilience for non-humic substances, b) low resilience for organic matter and humic acids, and c) no resilience for fulvic acids. The agricultural soils showed: a) low resilience for total organic matter and non-humic substances, and b) no resilience for fulvic and humic acids. We conclude that this approach is a powerful tool for establishing management practices according to each particular situation, allowing improved productivity in arid regions.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2553
Author(s):  
Magdalena Banach-Szott ◽  
Andrzej Dziamski ◽  
Maciej Markiewicz

The still-advancing soil degradation and the related losses of soil organic carbon stocks due to the limited inflow of organic residues in agro-ecosystems encourage more and more soil protection. Establishing meadow ecosystems is one of the key methods of agricultural land use preventing losses of organic carbon in soils. Based on the research on the properties of humic acids, it is possible to determine the advancement of the processes of transformation and decomposition of soil organic matter. The obtained results may allow for the development of a soil protection strategy and more effective sequestration of organic carbon. Therefore, the aim of the research was to determine the properties of humic acids defining the quality of organic matter of meadow soils irrigated for 150 years with the slope-and-flooding system. The research was performed based on the soils (Albic Brunic Arenosol) sampled from Europe’s unique complex of permanent irrigated grasslands (the same irrigation management for 150 years), applying the slope-and-flooding system: the Czerskie Meadows. The soil samples were assayed for the content of total organic carbon (TOC) and the particle size distribution. HAs were extracted with the Schnitzer method and analysed for the elemental composition, spectrometric parameters in the UV-VIS (ultraviolet-visible) range, hydrophilic and hydrophobic properties and the infrared spectra. The research results showed that the HAs properties depend on the depth and the distance from the irrigation ditch. The HAs of soils sampled from the depth of 0–10 cm were identified with a lower “degree of maturity” as compared with the HAs of soils sampled from the depth of 20–30 cm, reflected by the values of atomic ratios (H/C, O/C, O/H), absorbance coefficients, and the FT-IR (Fourier transform infrared) spectra. The mean values of the H/C ratio in the HAs molecules of soils sampled from the depth of 20–30 cm were lower by 8.2% than those from the depth of 0–10 cm. The mean values of the absorbance coefficient A4/6 in the HAs molecules of soils sampled from the depth of 20–30 cm were lower by 9.6% than in the HAs molecules of soils sampled from the depth of 0–10 cm. The HAs molecules of the soils sampled 25 m from the irrigation ditch were identified with a higher degree of humification, as compared with the HAs of the soils sampled 5 m from the irrigation ditch. The results identified that humic acids produced in the many-year irrigated sandy soils were identified with a high degree of humification, which proves the relative stability of the soil’s organic matter. It confirms the importance of meadow soils for the carbon sequestration process. It should also be emphasized that the research area is interesting, although hardly described in terms of organic matter properties. Further and more detailed applicable research is planned, e.g., monitoring of total organic carbon content and comparing the properties of irrigated and non-irrigated meadow soils. Continuity of research is necessary to assess the direction of the soil organic matter transformation in such a unique ecosystem. The obtained results may allow for the development of, inter alia, models of agricultural practices that increase carbon sequestration in soils. In the long term, this will allow for greater environmental benefits and, thus, also increased financial benefits.


2015 ◽  
Vol 2 (1) ◽  
pp. 73-78
Author(s):  
A. Fateev ◽  
D. Semenov ◽  
K. Smirnova ◽  
A. Shemet

Soil organic matter is known as an important condition for the mobility of trace elements in soils, their geo- chemical migration and availability to plants. However, various components of soil organic matter have differ- ent effect on these processes due to their signifi cant differences in structure and properties. Aim. To establish the role of humic and fulvic acids in the process of formation of microelement mobility in soils and their accu- mulation in plants. Methods. A model experiment with sand culture was used to investigate the release of trace elements from preparations of humic and fulvic acids and their uptake by oat plants. Results. It was found that among biologically needed elements humic acids are enriched with iron, fulvic acids – with zinc, and copper distribution between these two groups of substances may be characterized as even. These elements have un- equal binding power with components of soil organic matter, as evidenced by their release into the cultivation medium and accumulation in plants. In the composition of fulvic acids zink has the most mobility – up to 95 % of this element is in the form, accessible for plants; the lowest mobility was demonstrated by copper in the composition with humic acids, for which no signifi cant changes in the concentration of mobile forms in the substrate and in the introduction to the test culture were registered. Despite signifi cantly higher iron content in humic acids, the application of fulvic acids in the cultivation medium provides a greater increase in the con- centration of mobile forms of this element. Conclusions. The results confi rm the important role of organic sub- stances of fulvic nature in the formation of zinc and iron mobility in the soil and their accumulation in plants.


1970 ◽  
Vol 50 (2) ◽  
pp. 233-241 ◽  
Author(s):  
F. J. SOWDEN

The amino acids set free by proteolytic enzymes were determined with an amino acid analyzer. Soil and enzyme blanks were subtracted. Pronase released 2 to 10% of the aspartic acid + asparagine, threonine, serine, glutamic acid + glutamine, glycine, lysine and histidine in some fractions of soil organic matter along with 15–35% of the alanine, valine, isoleucine, leucine, tyrosine, phenylalanine and arginine. There was no release of proline, ornithine or ammonia. When the pronase hydrolysate was treated with leucine amino-peptidase, 15% of the proline was released, the yield of glycine was raised from 2 to 14% and the amount of the acidic amino acids was also higher. Acid hydrolysis of the pronase hydrolysate also released more amino acid material but the blanks were much higher than with leucine aminopeptidase. The results suggested that more than half of the aspartic and glutamic acids found on acid hydrolysis were present in the soil organic matter fractions as asparagine and glutamine. The action of pronase on the organic matter of the intact soil was slight, even in the presence of a complexing agent. Papain released very little amino acid material from organic matter fractions, but leucine aminopeptidase or HCl hydrolysis of the papain hydrolysate released about 10% of the amino acid of the fraction, indicating that significant amounts of peptides were formed on papain treatment.


2015 ◽  
Vol 39 (1) ◽  
pp. 222-231 ◽  
Author(s):  
Ricardo Fernandes de Sousa ◽  
Eliana Paula Fernandes Brasil ◽  
Cícero Célio de Figueiredo ◽  
Wilson Mozena Leandro

Veredas are humid tropical ecosystems, generally associated to hydromorphic soils and a shallow water table. The soils of these ecosystems are affected by the use of the areas around these veredas. The objective of this study was to determine soil organic matter (SOM) fractions in veredas adjacent to preserved (native savanna) and disturbed environments (agricultural areas and pastures) in the Cerrado biome. Soil samples were collected from the 0-10 and 10-20 cm layers along reference lines drawn along the relief following the upper, middle and lower positions of one of the slopes, in the direction of the draining line of the vereda. The soil analysis determined: total soil OC, total nitrogen and C:N ratio; C and N contents and C:N ratio in particulate and mineral-associated fractions (of SOM); fulvic acids, humic acids and humin fractions and ratio between humic and fulvic acids. The agricultural use around the veredas induced changes in the SOM fractions, more pronounced in the lower part of the slope. In the soil surface of this part, the OC levels in the humic substances and the particulate fraction of SOM, as well as total soil OC were reduced in the vereda next to crop fields.


2011 ◽  
Vol 35 (5) ◽  
pp. 1597-1608 ◽  
Author(s):  
Gislane M. de Moraes ◽  
Francisco Alisson da Silva Xavier ◽  
Eduardo de Sá Mendonça ◽  
João Ambrósio de Araújo Filho ◽  
Teógenes Senna de Oliveira

Studies have proven that the agroforestry systems in the semi-arid region of the State of Ceará, Brazil, induce an increase in soil organic C levels. Notwithstanding, there is no information if this increase also results in qualitative changes in different pools of soil organic matter. The objective of this study was to verify the possible chemical and structural alterations in fulvic and humic acids of a Luvisol in areas adopting agroforestry, traditional intensive cultivation and native forest in a long-term experiment conducted in the semi-arid region of Ceará State, Brazil. The study was conducted in an experimental area of the National Goat Research Center (Embrapa) in Sobral, CE. The following treatments were evaluated: agrosilvopasture (AGP), silvopasture (SILV), intensive cultivation under fallow (ICF), and areas with native forest (NF). Soil fulvic and humic acids fractions were extracted from the 0-6 and 6-12 cm layers and characterized by elemental composition, thermogravimetry and infrared spectroscopy analyses. The elemental composition analysis of humic acids confirmed the data found for fulvic acids, showing reduction in the C, H and N levels, followed by an increase in O contents in the AGP and ICF treatments over SILV and NF. In all treatments, except to SILV in the 0-6 cm layer, the percentage of mass loss was highest (300-600 °C) for humic acids in the thermally most stable region. Despite the similarity between infrared spectra, soil fulvic acids in the SILV treatment extracted from 6-12 cm depth decrease the absorption bands at 1708 and 1408 cm-1 followed by an increase in the absorption band at 1608 cm-1 attributed to aromatic C=C groups. This behavior suggests an increase in the aromatic character of the structure. The AGP and ICF treatments, which increase the soil tilling, favored the maintenance of humic substances with a more aromatic character in the soil than SILV and NF. The less aromatic humic substances in the SILV treatment resulted in an increase of exchange sites of soil organic matter, indicating improved nutrient cycling and maintenance of productivity in the system.


Author(s):  
Maroš Sirotiak ◽  
Alica Pastierová ◽  
Lenka Blinová

Abstract The study was focused on describing ultraviolet-visible spectra of the humic substances, humic acids and fulvic acids isolated from four Slovak soils. The samples were heated in a laboratory furnace, to simulate soil behaviour during fires. The absorbances at the wavelengths corresponding to the selected chromophores and specific wavelength for groups of substances were compared. Analysis of the UV -VIS spectra of the extracted humic substances may indicate the directions of interest in the changes in soil organic matter, along with the changes in external conditions, such as natural fires.


Sign in / Sign up

Export Citation Format

Share Document