scholarly journals Life Cycle Assessment of Reprocessed Cross Laminated Timber in Latvia

2021 ◽  
Vol 25 (1) ◽  
pp. 58-70
Author(s):  
Ilze Vamza ◽  
Fabian Diaz ◽  
Peteris Resnais ◽  
Antra Radziņa ◽  
Dagnija Blumberga

Abstract It is expected that Cross-laminated timber (CLT) and other engineered wood products will experience rapid growth in the coming years. Global population growth is requiring more housing units, at the same time the negative impact of construction industry cannot stay in the same level as today. Alternatives for concrete and steel reinforced structures are being explored. CLT has proven to be an excellent substitution for concrete regarding construction of buildings up to eight storeys high. In addition to much lower environmental impact, construction process using CLT takes significantly less time due to pre-cut shapes required for specific project. Despite mentioned benefits, there are considerable amount of CLT cuttings generated in this process. Due to irregular shape and small dimensions of these cuttings they are useless for further use in construction. By applying re-processing technology described in this paper, around 70 % of generated cuttings can be re-processed into new CLT panels. In this paper we are evaluating the environmental benefits of re-processing these cuttings into new CLT panels versus business-as-usual scenario with waste disposal. Life cycle assessment results showed significant reduction of environmental impact for the scenario of CLT cutting re-processing.

2019 ◽  
Vol 11 (5) ◽  
pp. 1278 ◽  
Author(s):  
Cindy Chen ◽  
Francesca Pierobon ◽  
Indroneil Ganguly

The use of cross-laminated timber (CLT), as an environmentally sustainable building material, has generated significant interest among the wood products industry, architects and policy makers in Washington State. However, the environmental impacts of CLT panels can vary significantly depending on material logistics and wood species mix. This study developed a regionally specific cradle-to-gate life cycle assessment of CLT produced in western Washington. Specifically, this study focused on transportation logistics, mill location, and relevant wood species mixes to provide a comparative analysis for CLT produced in the region. For this study, five sawmills (potential lamstock suppliers) in western Washington were selected along with two hypothetical CLT mills. The results show that the location of lumber suppliers, in reference to the CLT manufacturing facilities, and the wood species mix are important factors in determining the total environmental impacts of the CLT production. Additionally, changing wood species used for lumber from a heavier species such as Douglas-fir (Pseudotsuga menziesii) to a lighter species such as Sitka spruce (Picea sitchensis) could generate significant reduction in the global warming potential (GWP) of CLT. Given the size and location of the CLT manufacturing facilities, the mills can achieve up to 14% reduction in the overall GWP of the CLT panels by sourcing the lumber locally and using lighter wood species.


2020 ◽  
Vol 202 ◽  
pp. 10004
Author(s):  
Sri Hartini ◽  
Diana Puspitasari ◽  
Nabila Roudhatul Aisy ◽  
Yusuf Widharto

Lack of awareness and knowledge of environmental protection, many people discard cooking oil waste. According to several studies, cooking oil waste can be processed into more valuable products through certain processes that require energy and material. Biodiesel is an example. Beside biodiesel, the production process also produces non-product output. Thus, efforts to utilize cooking oil waste into more valuable products also have a negative impact on the environment. This study aims to measure the environmental impact of biodiesel production from waste cooking oil and compare it if it is discharged to landfill without the recycling process. Measurement of environmental impacts is carried out using a Life Cycle Assessment. Measurement of the environmental impact of biodiesel processing from cooking oil waste is based on a process carried out at a research institute. The measurement results state that the disposal of cooking oil waste has an adverse effect on the ecotoxicity category. Whereas the processing of cooking oil waste into biodiesel has advantages in the categories of climate change, the formation of photochemical oxidants, fine dust, oil and gas depletion, and water pressure indicators. the level of eco efficiency from processing waste cooking oil to biodiesel produces a value close to one which means that the production process is affordable but not yet sustainable.


Author(s):  
Carlo De Servi ◽  
Lucia Rigamonti ◽  
Stefano Consonni

This study aims at estimating the energy and environmental performances of a new cogenerative configuration of the waste to energy (WTE) plant in Piacenza. At present, the plant is authorized to treat 120,000 t/y of waste, but this limit does not represent the full treatment capacity of the facility. To exploit the plant potential and, at the same time, to reduce total equivalent emissions of the WTE process, a cogenerative configuration has been proposed. In this new scenario a back pressure turbine would be installed in parallel to the existing one, in order to supply heat to the district heating network of Piacenza and the total amount of waste treated per year by the facility would be increased to 134,100 t. The increase of 14,100 t should be satisfied by industrial and commercial waste, which would otherwise go to landfill. To compare the cogenerative scenario with the current situation, the environmental impact for the two cases has been evaluated by means of a life cycle assessment methodology. The results of the analysis show that the new configuration can ensure significant energy and environmental benefits.


Buildings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 245
Author(s):  
Malek Mohammad ◽  
Eyad Masad ◽  
Sami G. Al-Ghamdi

Three-dimensional concrete printing (3DCP) has become recognized as a possible alternative to conventional concrete construction, mainly due to its potential to increase productivity and reduce the environmental impact of the construction industry. Despite its up-and-coming popularity within the field, limited research has quantitively investigated the environmental benefits that 3DCP brings. This paper investigates the environmental tradeoff of utilizing 3DCP over conventional construction by conducting a detailed cradle-to-gate life cycle assessment (LCA) study of four case-scenarios (conventional concrete construction, 3DCP with reinforcement elements, 3DCP without any reinforcement, and 3DCP without any reinforcement and utilizing a lightweight printable concrete material.) These case-scenarios were carefully selected to quantify the environmental impact of 3DCP while emphasizing the importance of the material composition. The LCA was conducted for a 1 m2 external load-bearing wall in all four scenarios. The LCA analysis showed that 3DCP significantly reduced environmental effects in terms of global warming potential (GWP), acidification potential (AP), eutrophication potential (EP), smog formation potential (SFP), and fossil fuel depletion (FFD), as compared to conventional construction methods. However, these environmental improvements diminished when 3DCP was coupled with the use of conventional reinforcement elements. Moreover, the use of an alternative concrete mixture in 3DCP showed a further decrease in the GWP, AP, EP, and FFD impact. Ultimately, the findings in this paper support the advantages of 3DCP technology and recommend the investigation of the development of (i) sustainable printable concrete materials and (ii) novel reinforcement techniques that are suitable for 3DCP rather than adopting conventional reinforcement techniques.


2016 ◽  
Vol 688 ◽  
pp. 204-209 ◽  
Author(s):  
Jozef Mitterpach ◽  
Jozef Štefko

The main objective of this paper thesis is to determine the environmental impact of two houses made of two alternative materials - a wooden and a brick house - using a Life Cycle Assessment (LCA). By comparing the material composition of their design to determine the environmental impacts of global warming, human health, consumption of resources and ecosystem quality. An overall comparison showed that the materials for the construction of a wooden house have less negative impact on the environment than materials for the construction of a brick house. Using the GWP method, results show that the materials for the construction of a brick house leave twice the carbon footprint in the environment than materials for a wooden house. This resultant state is mainly due to the use of natural materials in the wooden house (wood, fibre insulation), unlike the materials used in the brick house (ceramic masonry, insulation from stone wool) and so on.


Management ◽  
2015 ◽  
Vol 19 (1) ◽  
pp. 89-97 ◽  
Author(s):  
Maciej Dzikuć

SummaryThe article presents an assessment of the Life Cycle Assessment (LCA) and pointed out its advantages in the analysis of the environmental impact of electricity generation. The article also points to the direction of development of the Polish energy sector and pointed out the need to determine the environmental risks associated with the production of electricity. The use of coal and lignite as the primary fuel causes a significant burden on the environment. An analysis by the method of LCA based on data obtained from two Polish power plants. The results were compared and identified the cause of the existing differences in the results obtained. The article sets out the actions that contributed to reduce the negative impact on the environment, taking place during the production of electricity.


Fibers ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 101
Author(s):  
La Rosa ◽  
Grammatikos

Among natural fibers, such as cotton, silk, wool, flax, hemp, etc., cotton is the one that takes up the highest percentage in the textile market. Nevertheless, there are obstacles associated with its cultivation; it is restricted to sub-tropical climates, and it is dependent upon high amounts of water, as well as the use of agrochemicals to ensure good yields. The use of pesticides and other types of chemical products give a negative impact on the environment. Life cycle assessment (LCA) is used in the present study in order to evaluate the environmental impacts of cotton cultivation and fibers production for textiles. Comparisons among traditional and organic cropping have been carried out. Further comparisons are described with other natural fibers, such as jute, hemp and kenaf, in order to identify the strong and weak points of each product. Weak (e.g., lack of supply, transportation and storage of biomass, infancy of the value chain, lack of production/distribution chains, etc.) and strong aspects (e.g., market potential, rural development, environmental benefits, etc.) are considered for the production of each type of fiber.


2014 ◽  
Vol 787 ◽  
pp. 117-122 ◽  
Author(s):  
Chen Li ◽  
Su Ping Cui ◽  
Xian Zheng Gong ◽  
Xian Ce Meng ◽  
Bo Xue Sun ◽  
...  

The detailed life cycle assessment of heavy-duty truck for highway transport in China is conducted by Centre of National Material Life Cycle Assessment (CNMLCA). The input of energy and output of pollutants emissions are documented as the life cycle inventory (LCI). The life cycle impact assessment (LCIA) results calculated with the CML method show that the hotspot of environmental impacts from transport in China. The environmental benefits from implementations of European emissions standards in China for transport are also analyzed. The analysis shows that the acidification potential (AP) makes the most huge contribution to total environmental impact, up to 33.7%. As the second hotsopt, global warming potential (GWP) takes up 26.83% of total environmental impact. Photochemical oxidant formation potential (POCP) takes up 23.42% of total environmental impact, which is more or less the same comparing with the result of GWP. Eutrophication potential (EP) takes up 15.05% of total environmental impact. The last but not the least environmental impact category - human toxicity potential (HTP), only takes up 0.95% of total environmental impact. If the heavy metal and dioxin emissions are also considered, maybe the results will be changed and the HTP will take more in the whole environmental impact. It can be concluded that if we pay more attention on SO2emissions especially NOx emissions reduction, the acidification and photochemical smog would be relieved a lot and the total environmental impact can be decreased a lot. More punishment on overload may be a good choice to reduce environmental load of heavy truck of highway transport in China.


Author(s):  
Antonio Ruiz Sánchez ◽  
Ventura Castillo Ramos ◽  
Manuel Sánchez Polo ◽  
María Victoria López Ramón ◽  
José Rivera Utrilla

The construction industry has a considerable environmental impact in societies, which must be controlled to achieve adequate sustainability levels. In particular, cement production contributes 5–8% of CO2 emissions worldwide, mainly from the utilization of clinker. This study applied Life Cycle Assessment (LCA) methodology to investigate the environmental impact of cement production and explore environmental improvements obtained by adding marble waste sludges in the manufacture of Portland cement. It was considered that 6–35% of the limestone required for its production could be supplied by marble waste sludge (mainly calcite), meeting the EN 197-1:2011 norm. Energy consumption and greenhouse gas (GHG) emission data were obtained from the Ecovent database using commercial LCA software. All life cycle impact assessment indicators were lower for the proposed “eco-cement” than for conventional cement, attributable to changes in the utilization of limestone and clinker. The most favorable results were achieved when marble waste sludge completely replaced limestone and was added to clinker at 35%. In comparison to conventional Portland cement production, this process reduced GHG emissions by 34%, the use of turbine waters by 60%, and the emission of particles into the atmosphere by 50%. Application of LCA methodology allowed evaluation of the environmental impact and improvements obtained with the production of a type of functional eco-cement. This approach is indispensable for evaluating the environmental benefits of using marble waste sludges in the production of cement.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2351
Author(s):  
Manuel Uceda-Rodríguez ◽  
Ana B. López-García ◽  
José Manuel Moreno-Maroto ◽  
Carlos Javier Cobo-Ceacero ◽  
María Teresa Cotes-Palomino ◽  
...  

A Life Cycle Assessment (LCA) using SimaPro software has been carried out concerning the manufacture of artificial lightweight aggregates (LWAs). The study aims to evaluate the changes in the environmental impact when an additive of residual origin, specifically olive pomace (OP), is added following the principles of the Circular Economy. This residue (commonly known as alperujo) was used as a substitute for clay in 1.25, 2.5 and 5 wt%. The environmental impact related to the use of olive pomace in the mixture was estimated using the CML 2000 methodology, yielding improvements of 3.8%, 7.7% and 15.3% for 1.25, 2.5 and 5 wt% OP added, respectively. Optimum addition results are in the range of 1.25 and 2.5 wt% OP. In this way, the reduction of emissions associated with LWA manufacture would be favored without negatively affecting the technological properties of the resulting material.


Sign in / Sign up

Export Citation Format

Share Document