Assessment of Different Binders for Activated Carbon Granulation for the Use in CO2 Adsorption

2021 ◽  
Vol 25 (1) ◽  
pp. 1086-1100
Author(s):  
Pauls Argalis ◽  
Ilze Jerane ◽  
Aivars Zhurinsh ◽  
Kristine Vegere

Abstract An eco-friendly method for the synthesis of granular activated carbon was developed in this study. Two types of activated carbon and three types of activated carbon granules have been obtained using different binders, and their properties have been determined. The approach requires adding other binders and waste materials to improve the granulation of activated carbon. Activated carbon was prepared from birch wood chips. Prepared carbon was granulated with a) gas generator tar, b) phenol-formaldehyde resin, and c) polyvinyl acetate to obtain granular activated carbon. This work aims to study the possibilities of using activated carbon adsorbents for CO2 adsorption. The activated carbon produced was characterized by BET, FTIR, and SEM. The adsorption behavior on CO2 was also studied. Granular activated carbons compression strength was enough to study it in an adsorption bed, and an optimal binder was to be phenol-formaldehyde resin and polyvinyl acetate. The obtained results show that activated carbon granules are suitable for CO2 adsorption and can be used, for example, for the removal of CO2 in the biogas upgrading process. As the sustainability problems are increasing, granules from waste materials could be promising materials for further studies.

BioResources ◽  
2015 ◽  
Vol 10 (3) ◽  
Author(s):  
Yong Cui ◽  
Jian-min Chang ◽  
Wen-liang Wang ◽  
Ben Li ◽  
Xue-yong Ren

2020 ◽  
pp. 34-43
Author(s):  
N. R. Memetov ◽  
◽  
A. V. Gerasimova ◽  
A. E. Kucherova ◽  
◽  
...  

The paper evaluates the effectiveness of the use of graphene nanostructures in the purification of lead (II) ions to improve the ecological situation of water bodies. The mechanisms and characteristic parameters of the adsorption process were analyzed using empirical models of isotherms at temperatures of 298, 303, 313 and 323 K, which correspond to the following order (based on the correlation coefficient): Langmuir (0.99) > Temkin (0.97) > Dubinin – Radushkevich (0.90). The maximum adsorption capacity of the material corresponds to the range from 230 to 260 mg/g. We research the equilibrium at the level of thermodynamic parameter estimates, which indicates the spontaneity of the process, the endothermic nature and structure change of graphene modified with phenol-formaldehyde resin during the adsorption of lead (II) ions, leading to an increase in the disorder of the system.


Sign in / Sign up

Export Citation Format

Share Document