scholarly journals Treatment of soy bean process water using hybrid processes

2013 ◽  
Vol 11 (1) ◽  
pp. 46-56 ◽  
Author(s):  
Viktor Pauer ◽  
Edit Csefalvay ◽  
Peter Mizsey

AbstractThe soy bean process water that is a by-product of soy processing technology can be utilized with a hybrid separation system recommended and investigated in this work. The aims of the soy bean water processing are to i.) concentrate the valuable components of the soy process water and ii.) reuse its water content. Two hybrid separation systems are considered and investigated: ultrafiltration followed by nanofiltration and centrifugal separation followed by nanofiltration. These hybrid separation systems are new in the area of their current application. Experiments verify that centrifugal separation is a more appropriate pre-treatment method for the removal of suspended solids and for the preservation of the sucrose content of the soy bean process water than ultrafiltration. Total sucrose can be rejected by nanofiltration membrane forming a sugar-rich retentate that contains other valuable components, too. Both tested hybrid processes result in clear and reusable permeates with low chemical oxygen demand that can be recycled to the production process reducing its water consumption and improving its sustainability. The recommended new hybrid separation system, centrifugal separation followed by nanofiltration, proves to be successful in this area of the biochemical industry.

2017 ◽  
Vol 15 (1) ◽  
pp. 123-128 ◽  
Author(s):  
Marjana Simonič

AbstractLaboratory scale filtration tests utilizing leachate were conducted to investigate fouling and filtration performance of nanofiltration membranes. The work presented in this study is conducted on real samples rather than model water. Physico-chemical analyses showed that the leachate contained a lot of organic substances, exceeding 20000 mg/L O2 expressed as chemical oxygen demand. Proper pre-treatment method must be chosen in order to reduce fouling index. Coagulation pre-treatment using poly-aluminium chloride was chosen. Two thin film polysulfone membranes were used, purchased by Osmonic Desal. The focus of this research is to assess the influence of the particle size and zeta-potential of the colloidal fraction in leachate on nanofiltration performance. The isoelectric point of both membranes was 4.7 and 4.3, respectively. The fouled membranes were negatively charged over the pH range with isoelectric point shifting to the left (lower pH) indicating the foulant material mainly not charged. It was confirmed by its zeta-potential, measured at -2 mV.


2019 ◽  
Vol 8 (2) ◽  
pp. 5919-5923

(Being produced in vast quantity as one of by-product from cassava starch processing chains, cassava pulp has great potential for energy recovery by harnessing biogas through anaerobic digestion (AD). This study aims to enhance biogas production by comparative investigation in batch mode digestion. 5%TS w/v of cassava pulp mixed with mill effluent were pre-treated with 10 molar potassium hydroxide (KOH), sodium hydroxide (NaOH), and calcium hydroxide (Ca(OH)2) solution for 6 hours contact time. Effects of different alkaline pre-treatment on cassava substrate were assessed in total dissolved solid (TDS), soluble chemical oxygen demand (SCOD), Volatile Fatty Acids to Alkalinity ratio (VFA/TA), and reducing sugars. Daily accumulated biogas yield was taken as final indicator of the effect of different pre-treatment. KOH pre-treatment in pH 11 resulted highest dissolved solid 13.07 mg/L, and improved soluble chemical oxygen demand (SCOD) formation up to 75.61% (480,000 mg/L) than control substrate. The experiment revealed peak biogas production by KOH pre-treated substrate was found at day 6 after digestion executed, and achieved 546 ml. The finding proves out of different pre-treatment method applicable to cassava pulp, KOH pre-treatment could realistically increase biogas yield for cassava mills. Biogas production increased up to 101%, 92%, and 70% using KOH, Ca(OH)2 and NaOH respectively. However, when future provision to the technology for AD system and design is concerned, the choice of highly reactive alkali could lead to complication in the system.


2012 ◽  
Vol 65 (10) ◽  
pp. 1809-1816 ◽  
Author(s):  
S. Şahinkaya ◽  
M. F. Sevimli ◽  
A. Aygün

One of the most serious problems encountered in biological wastewater treatment processes is the production of waste activated sludge (WAS). Sonication, which is an energy-intensive process, is the most powerful sludge pre-treatment method. Due to lack of information about the combined pre-treatment methods of sonication, the combined pre-treatment methods were investigated and it was aimed to improve the disintegration efficiency of sonication by combining sonication with alkalization and thermal pre-treatment methods in this study. The process performances were evaluated based on the quantities of increases in soluble chemical oxygen demand (COD), protein and carbohydrate. The releases of soluble COD, carbohydrate and protein by the combined methods were higher than those by sonication, alkalization and thermal pre-treatment alone. Degrees of sludge disintegration in various options of sonication were in the following descending order: sono-alkalization > sono-thermal pre-treatment > sonication. Therefore, it was determined that combining sonication with alkalization significantly improved the sludge disintegration and decreased the required energy to reach the same yield by sonication. In addition, effects on sludge settleability and dewaterability and kinetic mathematical modelling of pre-treatment performances of these methods were investigated. It was proven that the proposed model accurately predicted the efficiencies of ultrasonic pre-treatment methods.


Author(s):  
E Y. Wang ◽  
J. T. Cherian ◽  
A. Madsen ◽  
R. M. Fisher

Many steel parts are electro-plated with chromium to protect them against corrosion and to improve their wear-resistance. Good adhesion of the chrome plate to the steel surface, which is essential for long term durability of the part, is extremely dependent on surface preparation prior to plating. Recently, McDonnell Douglas developed a new pre-treatment method for chrome plating in which the steel is anodically etched in a sulfuric acid and hydrofluoric acid solution. On carbon steel surfaces, this anodic pre-treatment produces a dark, loosely adhering material that is commonly called the “smut” layer. On stainless steels and nickel alloys, the surface is only darkened by the anodic pre-treatment and little residue is produced. Anodic pre-treatment prior to hard chrome plating results in much better adherence to both carbon and alloy steels.We have characterized the anodic pre-treated steel surface and the resulting “smut” layer using various techniques including electron spectroscopy for chemical analysis (ESCA) on bulk samples and transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS) on stripped films.


1978 ◽  
Vol 5 (1) ◽  
pp. 83-97 ◽  
Author(s):  
Robert D. Cameron

The use of cheap, locally available peat as a treatment method for landfill leachate was investigated by passing leachate through plexiglass columns filled with an amorphous-granular peat. Preliminary adjustment of pH showed that reducing pH to 4.8 dramatically reduced adsorption. Increasing the pH to 8.4, metal removal was increased owing to filtration of precipitated metals. The best adsorption of metals occurred at the 'natural' pH of 7.1. Manganese was found to be the limiting pollutant. At the 0.05 mg/ℓ maximum acceptable manganese concentration 94% of the total metals were removed, requiring 159 kg of peat per 1000 ℓ of leachate.Resting the peat for 1 month did significantly increase removal capacity.Desorption of some contaminants occurred when water was percolated through the peat. The desorption test effluent was not toxic to fish although iron, lead and COD (chemical oxygen demand) exceeded acceptable values.Chemical pretreatment using lime and ferric chloride achieved significant iron, manganese and calcium removals. Chemical pretreatment followed by peat adsorption offered no advantage other than reducing toxicity to fish.Peat treatment alone was effective in reducing concentrations to a level that was non-toxic to fish.


2019 ◽  
Vol 37 (No. 4) ◽  
pp. 246-251 ◽  
Author(s):  
Joanna Tkaczewska ◽  
Maciej Wielgosz ◽  
Piotr Kulawik ◽  
Marzena Zajac

The influence of drying temperature on the characteristics and gel properties of gelatine from Cyprinus carpio L. skin was studied. Gelatine was extracted from the carp skin using NaOH and ethanol pre-treatment method, extracted in water in 45°C and then dried in 4 different temperatures: 50, 70, 80°C and freeze-dried. The  electrophoresis and functional properties of gelatines were investigated. Freeze drying allowed to obtain a high gelling force, and all other methods did not give satisfactory results. The proteins in gelatines dried at higher temperatures separated by electrophoresis gave severely blurred bands. It may be explained by thermal hydrolysis of collagen fibrils. Freeze drying is the only effective method for drying this product, which can be used in industry.


Talanta ◽  
2007 ◽  
Vol 71 (3) ◽  
pp. 1172-1179 ◽  
Author(s):  
Y. Fajardo ◽  
E. Gómez ◽  
F. Garcias ◽  
V. Cerdà ◽  
M. Casas

Desalination ◽  
2010 ◽  
Vol 250 (2) ◽  
pp. 557-561 ◽  
Author(s):  
J.J. Lee ◽  
M.A.H. Johir ◽  
K.H. Chinu ◽  
H.K. Shon ◽  
S. Vigneswaran ◽  
...  

2013 ◽  
Vol 67 (9) ◽  
Author(s):  
Karina Michalska ◽  
Stanisław Ledakowicz

AbstractThis work studies the influence of the alkali pre-treatment of Sorghum Moench — a representative of energy crops used in biogas production. Solutions containing various concentrations of sodium hydroxide were used to achieve the highest degradation of lignocellulosic structures. The results obtained after chemical pre-treatment indicate that the use of NaOH leads to the removal of almost all lignin (over 99 % in the case of 5 mass % NaOH) from the biomass, which is a prerequisite for efficient anaerobic digestion. Several parameters, such as chemical oxygen demand, total organic carbon, total phenolic content, volatile fatty acids, and general nitrogen were determined in the hydrolysates thus obtained in order to define the most favourable conditions. The best results were obtained for the Sorghum treated with 5 mass % NaOH at 121°C for 30 min The hydrolysate thus achieved consisted of high total phenolic compounds concentration (ca. 4.7 g L−1) and chemical oxygen demand value (ca. 45 g L−1). Although single alkali hydrolysis causes total degradation of glucose, a combined chemical and enzymatic pre-treatment of Sorghum leads to the release of large amounts of this monosaccharide into the supernatant. This indicates that alkali pre-treatment does not lead to complete cellulose destruction. The high degradation of lignin structure in the first step of the pre-treatment rendered the remainder of the biomass available for enzymatic action. A comparison of the efficiency of biogas production from untreated Sorghum and Sorghum treated with the use of NaOH and enzymes shows that chemical hydrolysis improves the anaerobic digestion effectiveness and the combined pre-treatment could have great potential for methane generation.


Sign in / Sign up

Export Citation Format

Share Document