Large transverse momentum lepton pair production at the Large Hadron Collider

Open Physics ◽  
2011 ◽  
Vol 9 (6) ◽  
Author(s):  
Rui-tao Yin ◽  
Yong-ping Fu ◽  
Yun-de Li

AbstractWe study the large transverse momentum distribution of lepton pairs produced in heavy-ion collisions, making use of the perturbative QCD. Referring to the calculation of the parton-parton production process into lepton pairs at the Relativistic Heavy Ion Collider (RHIC), the production of lepton pairs at large transverse momentum is extended to the Large Hadron Collider (LHC). The contribution of the parton-parton production process into lepton pairs in Pb-Pb collisions at the LHC is calculated, including the complete processes at large transverse momentum. Lepton pair production with the direct single photon process and the resolved single photon process are considered and confirmed to be significant at the LHC.

2020 ◽  
Vol 35 (21) ◽  
pp. 2050177
Author(s):  
Hua Zheng ◽  
Xiangrong Zhu ◽  
Lilin Zhu ◽  
Aldo Bonasera

We investigate the charged particle spectra produced in the heavy-ion collisions at nine centralities from different systems, i.e. [Formula: see text] at [Formula: see text] TeV and 5.02 TeV as well as [Formula: see text] at [Formula: see text] TeV, at Large Hadron Collider (LHC) using one empirical formula inspired by the stationary solution of the Fokker-Planck equation, dubbed as the generalized Fokker-Planck solution (GFPS). Our results show that the GFPS can reproduce the experimental particle spectrum up to transverse momentum [Formula: see text] about 45 GeV/c with the maximum discrepancy 30% covering 10 orders of magnitude. The discrepancy between the data and the results from the GFPS decreases to 15% when the maximum of the charged particle transverse momentum is cut to 20 GeV/c. We confirmed that the Tsallis distribution derived from the non-extensive statistics, which can reproduce the particle spectra produced in small collision systems, such as [Formula: see text], up to few hundreds GeV/c, can only apply to systematically study the particle spectra up to 8 GeV/c in [Formula: see text] collisions at LHC, as pointed out in the study of identified particle spectra in [Formula: see text] collisions at [Formula: see text] TeV. A brief discussion on GFPS is also given.


Author(s):  
Pedro Agostini ◽  
Tolga Altinoluk ◽  
Néstor Armesto

Abstract We analyse the azimuthal structure of two gluon correlations in the color glass condensate including those effects that result from relaxing the shockwave approximation for the target. Working in the Glasma graph approach suitable for collisions between dilute systems, we compute numerically the azimuthal distributions and show that both even and odd harmonics appear. We study their dependence on model parameters, energy of the collision, pseudorapidity and transverse momentum of the produced particles, and length of the target. While the contribution from non-eikonal corrections vanishes with increasing collision energy and becomes negligible at the energies of the Large Hadron Collider, it is found to be sizeable up to top energies at the Relativistic Heavy Ion Collider.


2005 ◽  
Vol 20 (11) ◽  
pp. 2232-2236 ◽  
Author(s):  
ERIK W. DVERGSNES ◽  
PER OSLAND ◽  
ALEXANDER A. PANKOV ◽  
NELLO PAVER

We present an analysis, based on the center–edge asymmetry, to distinguish effects of extra dimensions within the Arkani-Hamed–Dimopoulos–Dvali (ADD) and Randall–Sundrum (RS) scenarios from other new physics effects in lepton-pair production at the CERN Large Hadron Collider LHC. Spin-2 and spin-1 exchange can be distinguished up to an ADD cutoff scale, MH, of about 5 TeV, at the 95% CL. In the RS scenario, spin-2 resonances can be identified in most of the favored parameter space.


Sign in / Sign up

Export Citation Format

Share Document