scholarly journals The effect of TGF-β1 and Smad7 gene transfer on the phenotypic changes of rat alveolar epithelial cells

Author(s):  
Guo-Ping Xu ◽  
Qing-Quan Li ◽  
Xi-Xi Cao ◽  
Qi Chen ◽  
Zhong-Hua Zhao ◽  
...  

AbstractThe aim of this study was to investigate whether transforming growth factor-β1 (TGF-β1) could induce alveolar epithelial-mesenchymal transition (EMT) in vitro, and whether Smad7 gene transfer could block this transition. We also aimed to elucidate the possible mechanisms of these processes. The Smad7 gene was transfected to the rat type II alveolar epithelial cell line (RLE-6TN). Expression of the EMT-associated markers was assayed by Western Blot and Real-time PCR. Morphological alterations were examined via phase-contrast microscope and fluorescence microscope, while ultrastructural changes were examined via electron microscope. TGF-β1 treatment induced a fibrotic phenotype of RLE-6TN with increased expression of fibronectin (FN), α-smooth muscle actin (α-SMA) and vimentin, and decreased expression of E-cadherin (E-cad) and cytokeratin19 (CK19). After transfecting the RLE-6TN with the Smad7 gene, the expression of the mesenchymal markers was downregulated while that of the epithelial markers was upregulated. TGF-β1 treatment for 48 h resulted in the separation of RLE-6TN from one another and a change into elongated, myofibroblast-like cells. After the RLE-6TN had been transfected with the Smad7 gene, TGF-β1 treatment had no effect on the morphology of the RLE-6TN. TGF-β1 treatment for 48 h resulted in an abundant expression of α-SMA in the RLE-6TN. If the RLE-6TN were transfected with the Smad7 gene, TGF-β1 treatment for 48 h could only induce a low level of α-SMA expression. Furthermore, TGF-β1 treatment for 12 h resulted in the degeneration and swelling of the osmiophilic multilamellar bodies, which were the markers of type II alveolar epithelial cells. TGF-β1 can induce alveolar epithelialmesenchymal transition in vitro, which is dependent on the Smads signaling pathway to a certain extent. Overexpression of the Smad7 gene can partially block this process

2009 ◽  
Vol 297 (5) ◽  
pp. L805-L812 ◽  
Author(s):  
V. M. Felton ◽  
Z. Borok ◽  
B. C. Willis

The ability of transforming growth factor-β1 (TGF-β1) to induce epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AEC) in vitro and in vivo, together with the demonstration of EMT in biopsies of idiopathic pulmonary fibrosis (IPF) patients, suggests a role for TGF-β1-induced EMT in disease pathogenesis. We investigated the effects of N-acetylcysteine (NAC) on TGF-β1-induced EMT in a rat epithelial cell line (RLE-6TN) and in primary rat alveolar epithelial cells (AEC). RLE-6TN cells exposed to TGF-β1 for 5 days underwent EMT as evidenced by acquisition of a fibroblast-like morphology, downregulation of the epithelial-specific protein zonula occludens-1, and induction of the mesenchymal-specific proteins α-smooth muscle actin (α-SMA) and vimentin. These changes were inhibited by NAC, which also prevented Smad3 phosphorylation. Similarly, primary alveolar epithelial type II cells exposed to TGF-β1 also underwent EMT that was prevented by NAC. TGF-β1 decreased cellular GSH levels by 50–80%, whereas NAC restored them to ∼150% of those found in TGF-β1-treated cells. Treatment with glutathione monoethyl ester similarly prevented an increase in mesenchymal marker expression. Consistent with its role as an antioxidant and cellular redox stabilizer, NAC dramatically reduced intracellular reactive oxygen species production in the presence of TGF-β1. Finally, inhibition of intracellular ROS generation during TGF-β1 treatment prevented alveolar EMT, but treatment with H2O2 alone did not induce EMT. We conclude that NAC prevents EMT in AEC in vitro, at least in part through replenishment of intracellular GSH stores and limitation of TGF-β1-induced intracellular ROS generation. We speculate that beneficial effects of NAC on pulmonary function in IPF may be mediated by inhibitory effects on alveolar EMT.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jung-Hyun Kim ◽  
Geun Ho An ◽  
Ji-Young Kim ◽  
Roya Rasaei ◽  
Woo Jin Kim ◽  
...  

AbstractDetailed understanding of the pathogenesis and development of effective therapies for pulmonary fibrosis (PF) have been hampered by lack of in vitro human models that recapitulate disease pathophysiology. In this study, we generated alveolar organoids (AOs) derived from human pluripotent stem cells (hPSCs) for use as an PF model and for drug efficacy evaluation. Stepwise direct differentiation of hPSCs into alveolar epithelial cells by mimicking developmental cues in a temporally controlled manner was used to generate multicellular AOs. Derived AOs contained the expected spectrum of differentiated cells, including alveolar progenitors, type 1 and 2 alveolar epithelial cells and mesenchymal cells. Treatment with transforming growth factor (TGF-β1) induced fibrotic changes in AOs, offering a PF model for therapeutic evaluation of a structurally truncated form (NP-011) of milk fat globule-EGF factor 8 (MFG-E8) protein. The significant fibrogenic responses and collagen accumulation that were induced by treatment with TGF-β1 in these AOs were effectively ameliorated by treatment with NP-011 via suppression of extracellular signal-regulated kinase (ERK) signaling. Furthermore, administration of NP-011 reversed bleomycin-induced lung fibrosis in mice also via ERK signaling suppression and collagen reduction. This anti-fibrotic effect mirrored that following Pirfenidone and Nintedanib administration. Furthermore, NP-011 interacted with macrophages, which accelerated the collagen uptake for eliminating accumulated collagen in fibrotic lung tissues. This study provides a robust in vitro human organoid system for modeling PF and assessing anti-fibrotic mechanisms of potential drugs and suggests that modified MGF-E8 protein has therapeutic potential for treating PF.


2004 ◽  
Vol 287 (1) ◽  
pp. L104-L110 ◽  
Author(s):  
Xiaohui Fang ◽  
Yuanlin Song ◽  
Rachel Zemans ◽  
Jan Hirsch ◽  
Michael A. Matthay

Previous studies have used fluid-instilled lungs to measure net alveolar fluid transport in intact animal and human lungs. However, intact lung studies have two limitations: the contribution of different distal lung epithelial cells cannot be studied separately, and the surface area for fluid absorption can only be approximated. Therefore, we developed a method to measure net vectorial fluid transport in cultured rat alveolar type II cells using an air-liquid interface. The cells were seeded on 0.4-μm microporous inserts in a Transwell system. At 96 h, the transmembrane electrical resistance reached a peak level (1,530 ± 115 Ω·cm2) with morphological evidence of tight junctions. We measured net fluid transport by placing 150 μl of culture medium containing 0.5 μCi of 131I-albumin on the apical side of the polarized cells. Protein permeability across the cell monolayer, as measured by labeled albumin, was 1.17 ± 0.34% over 24 h. The change in concentration of 131I-albumin in the apical fluid was used to determine the net fluid transported across the monolayer over 12 and 24 h. The net basal fluid transport was 0.84 μl·cm−2·h−1. cAMP stimulation with forskolin and IBMX increased fluid transport by 96%. Amiloride inhibited both the basal and stimulated fluid transport. Ouabain inhibited basal fluid transport by 93%. The cultured cells retained alveolar type II-like features based on morphologic studies, including ultrastructural imaging. In conclusion, this novel in vitro system can be used to measure net vectorial fluid transport across cultured, polarized alveolar epithelial cells.


1995 ◽  
Vol 269 (1) ◽  
pp. L127-L135 ◽  
Author(s):  
W. W. Barton ◽  
S. Wilcoxen ◽  
P. J. Christensen ◽  
R. Paine

Intercellular adhesion molecule-1 (ICAM-1) is expressed at high levels on type I alveolar epithelial cells in the normal lung and is induced in vitro as type II cells spread in primary culture. In contrast, in most nonhematopoetic cells ICAM-1 expression is induced in response to inflammatory cytokines. We have formed the hypothesis that the signals that control ICAM-1 expression in alveolar epithelial cells are fundamentally different from those controlling expression in most other cells. To test this hypothesis, we have investigated the influence of inflammatory cytokines on ICAM-1 expression in isolated type II cells that have spread in culture and compared this response to that of rat pulmonary artery endothelial cells (RPAEC). ICAM-1 protein, determined both by a cell-based enzyme-linked immunosorbent assay and by Western blot analysis, and mRNA were minimally expressed in unstimulated RPAEC but were significantly induced in a time- and dose-dependent manner by treatment with tumor necrosis factor-alpha, interleukin-1 beta, or interferon-gamma. In contrast, these cytokines did not influence the constitutive high level ICAM-1 protein expression in alveolar epithelial cells and only minimally affected steady-state mRNA levels. ICAM-1 mRNA half-life, measured in the presence of actinomycin D, was relatively long at 7 h in alveolar epithelial cells and 4 h in RPAEC. The striking lack of response of ICAM-1 expression by alveolar epithelial cells to inflammatory cytokines is in contrast to virtually all other epithelial cells studied to date and supports the hypothesis that ICAM-1 expression by these cells is a function of cellular differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)


2007 ◽  
Vol 293 (1) ◽  
pp. L212-L221 ◽  
Author(s):  
Shilpa Vyas-Read ◽  
Philip W. Shaul ◽  
Ivan S. Yuhanna ◽  
Brigham C. Willis

Patients with interstitial lung diseases, such as idiopathic pulmonary fibrosis (IPF) and bronchopulmonary dysplasia (BPD), suffer from lung fibrosis secondary to myofibroblast-mediated excessive ECM deposition and destruction of lung architecture. Transforming growth factor (TGF)-β1 induces epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AEC) to myofibroblasts both in vitro and in vivo. Inhaled nitric oxide (NO) attenuates ECM accumulation, enhances lung growth, and decreases alveolar myofibroblast number in experimental models. We therefore hypothesized that NO attenuates TGF-β1-induced EMT in cultured AEC. Studies of the capacity for endogenous NO production in AEC revealed that endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) are expressed and active in AEC. Total NOS activity was 1.3 pmol·mg protein−1·min−1 with 67% derived from eNOS. TGF-β1 (50 pM) suppressed eNOS expression by more than 60% and activity by 83% but did not affect iNOS expression or activity. Inhibition of endogenous NOS with l-NAME led to spontaneous EMT, manifested by increased α-smooth muscle actin (α-SMA) expression and a fibroblast-like morphology. Provision of exogenous NO to TGF-β1-treated AEC decreased stress fiber-associated α-SMA expression and decreased collagen I expression by 80%. NO-treated AEC also retained an epithelial morphology and expressed increased lamellar protein, E-cadherin, and pro-surfactant protein B compared with those treated with TGF-β alone. These findings indicate that NO serves a critical role in preserving an epithelial phenotype and in attenuating EMT in AEC. NO-mediated regulation of AEC fate may have important implications in the pathophysiology and treatment of diseases such as IPF and BPD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaohe Li ◽  
Rui Liu ◽  
Yunyao Cui ◽  
Jingjing Liang ◽  
Zhun Bi ◽  
...  

Pulmonary fibrosis is a known sequela of severe or persistent lung damage. Existing clinical, imaging and autopsy studies have shown that the lungs exhibit a pathological pulmonary fibrosis phenotype after infection with coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pulmonary fibrosis may be one of the most serious sequelae associated with coronavirus disease 2019 (COVID-19). In this study, we aimed to examine the preventative effects of the antiviral drug remdesivir on pulmonary fibrosis. We used a mouse model of bleomycin-induced pulmonary fibrosis to evaluate the effects of remdesivir on pulmonary fibrosis in vivo and further explored the potential pharmacological mechanisms of remdesivir in lung fibroblasts and alveolar epithelial cells in vitro. The preventive remdesivir treatment was started on the day of bleomycin installation, and the results showed that remdesivir significantly alleviated bleomycin-induced collagen deposition and improved pulmonary function. In vitro experiments showed that remdesivir dose-dependently suppressed TGF-β1-induced lung fibroblast activation and improved TGF-β1-induced alveolar epithelial to mesenchymal transition. Our results indicate that remdesivir can preventatively alleviate the severity of pulmonary fibrosis and provide some reference for the prevention of pulmonary fibrosis in patients with COVID-19.


2003 ◽  
Vol 285 (3) ◽  
pp. L527-L539 ◽  
Author(s):  
Ying Dong Xu ◽  
Jiesong Hua ◽  
Alice Mui ◽  
Robert O'Connor ◽  
Gary Grotendorst ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a progressive fatal fibrotic lung disease. Transforming growth factor (TGF)-β1 is present in a biologically active conformation in the epithelial cells lining lesions with advanced IPF. To determine the role of aberrant expression of biologically active TGF-β1 by alveolar epithelial cells (AECs), the AECs of explanted normal rat lungs were transfected with the TGF-β1 gene using the retrovirus pMX-L-s223,225-TGF-β1. In situ hybridization using a digoxigenin-labeled cDNA of the puromycin resistance gene contained in the pMX demonstrated that pMX-L-s233,225-TGF-β1 was selectively transfected into AECs of the explants. Conditioned media overlying explants obtained 7 days after being treated with pMX-L-s223,225-TGF-β1 contained 14.5 ± 3.15 pg/ml of active TGF-β1. With the use of Masson's trichrome staining of explant sections obtained 14 days after transfection, there were lesions similar to those in IPF, characterized by type II AEC hyperplasia, interstitial thickening, extensive increase in interstitial and subepithelial collagen, an increase in the number of fibroblasts, and areas resembling fibroblast buds. Collagens I, III, IV, and V and fibronectin were increased in explants treated with pMX-L-s223,225-TGF-β1. The findings in the current study suggest that IPF may be a disorder of epithelial cells and not inflammatory cells.


Sign in / Sign up

Export Citation Format

Share Document