Solid state fermentation for the production of α-amylase from Penicillium chrysogenum using mixed agricultural by-products as substrate

Biologia ◽  
2006 ◽  
Vol 61 (6) ◽  
Author(s):  
Figen Ertan ◽  
Bilal Balkan ◽  
Seda Balkan ◽  
Tulin Aktac

AbstractProduction of α-amylase from local isolate, Penicillium chrysogenum, under solid-state fermentation (SSF) was carried out in this study. Different agricultural by-products, such as wheat bran (WB), sunflower oil meal (SOM), and sugar beet oil cake (SBOC), were used as individual substrate for the enzyme production. WB showed the highest enzyme activity (750 U/gds). Combination of WB, SOM, and SBOC (1:3:1 w/w/w) resulted in a higher enzyme yield (845 U/gds) in comparison with the use of the individual substrate. This combination was used as mixed solid substrate for the production of α-amylase from P. chrysogenum by SSF. Fermentation conditions were optimized. Maximum enzyme yield (891 U/gds) was obtained when SSF was carried out using WB + SOM + SBOC (1:3:1 w/w/w), having initial moisture of 75%, inoculum level of 20%, incubation period of 7 days at 30°C. Galactose (1% w/w), urea and peptone (1% w/w), as additives, caused increase in the enzyme activity.

2017 ◽  
Vol 7 (5) ◽  
pp. 17
Author(s):  
Mirza M.V. Baig ◽  
Aniruddha Ratnakar Apastambh

The production of Pectic enzymes by Aspergillus niger was studied under solid state fermentation (SSF). The effect of fermentation condition such as substrate concentration, inoculum volume, incubation time, moistening agent, inducers and organic and inorganic nitrogen sources was studied for enzyme production. Culture conditions were optimized for maximal yield of enzyme. The solid substrate wheat bran was most suitable for pectic enzyme production under SSF. Enzyme production was found maximum after 10 days of incubation. Lactose was found to be most effective as inducer. Gelatin as organic nitrogen source and ammonium nitrate as inorganic nitrogen source yielded high enzyme titres.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Khushal Brijwani ◽  
Praveen V. Vadlani

We investigated the effect of pretreatment on the physicochemical characteristics—crystallinity, bed porosity, and volumetric specific surface of soybean hulls and production of cellulolytic enzymes in solid-state fermentation of Trichoderma reesei and Aspergillus oryzae cultures. Mild acid and alkali and steam pretreatments significantly increased crystallinity and bed porosity without significant change inholocellulosic composition of substrate. Crystalline and porous steam-pretreated soybean hulls inoculated with T. reesei culture had 4 filter paper units (FPU)/g-ds, 0.6 IU/g-ds β-glucosidase, and 45 IU/g-ds endocellulase, whereas untreated hulls had 0.75 FPU/g-ds, 0.06 IU/g-ds β-glucosidase, and 7.29 IU/g-ds endocellulase enzyme activities. In A. oryzae steam-pretreated soybean hulls had 47.10 IU/g-ds endocellulase compared to 30.82 IU/g-ds in untreated soybean hulls. Generalized linear statistical model fitted to enzyme activity data showed that effects of physicochemical characteristics on enzymes production were both culture and enzyme specific. The paper shows a correlation between substrate physicochemical properties and enzyme production.


2011 ◽  
Vol 3 (2) ◽  
pp. 268-273
Author(s):  
K. N. Geetha ◽  
K. Jeyaprakash ◽  
Y. P. Nagaraja

The amylase producing fungi were isolated from spoiled fruits, vegetables and soil, in and around Bangalore, Karnataka, India. The isolates were identified and five fungal species were screened. The best amylase producer among them, Aspergillus sp was selected for enzyme production by both sub merged fermentation using mineral salt medium (MSM) and solid state fermentations using wheat bran as a solid substrate. The various parameters influencing solid state fermentation were optimized. The most important factors are such as pH, incubation temperature, incubation period, carbon sources, nitrogen sources and moisture content. The maximum amount of enzyme production was obtained when solid state fermentation was carried out with soluble starch as carbon source and beef extract (1% each) as nitrogen source, optimum conditions of pH 7.0, an incubation temperature of 25 (±2) °C, incubation time 96 h and 62% moisture content.


2021 ◽  
pp. 100926
Author(s):  
Luis O. Cano y Postigo ◽  
Daniel A. Jacobo-Velázquez ◽  
Daniel Guajardo-Flores ◽  
Luis Eduardo Garcia Amezquita ◽  
Tomás García-Cayuela

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hamid Mukhtar ◽  
Ikramul Haq

The present study describes the screening of different agroindustrial byproducts for enhanced production of alkaline protease by a wild and EMS induced mutant strain ofBacillus subtilisIH-72EMS8. During submerged fermentation, different agro-industrial byproducts were tested which include defatted seed meals of rape, guar, sunflower, gluten, cotton, soybean, and gram. In addition to these meals, rice bran, wheat bran, and wheat flour were also evaluated for protease production. Of all the byproducts tested, soybean meal at a concentration of 20 g/L gave maximum production of the enzyme, that is, 5.74  ±  0.26 U/mL from wild and 11.28  ±  0.45 U/mL from mutant strain, during submerged fermentation. Different mesh sizes (coarse, medium, and fine) of the soybean meal were also evaluated, and a finely ground soybean meal (fine mesh) was found to be the best. In addition to the defatted seed meals, their alkali extracts were also tested for the production of alkaline protease byBacillus subtilis, but these were proved nonsignificant for enhanced production of the enzyme. The production of the enzyme was also studied in solid state fermentation, and different agro-industrial byproducts were also evaluated for enzyme production. Wheat bran partially replaced with guar meal was found as the best substrate for maximum enzyme production under solid state fermentation conditions.


Sign in / Sign up

Export Citation Format

Share Document