scholarly journals Seed Priming with Phytohormones: An Effective Approach for the Mitigation of Abiotic Stress

Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Mohammad Saidur Rhaman ◽  
Shahin Imran ◽  
Farjana Rauf ◽  
Mousumi Khatun ◽  
Carol C. Baskin ◽  
...  

Plants are often exposed to abiotic stresses such as drought, salinity, heat, cold, and heavy metals that induce complex responses, which result in reduced growth as well as crop yield. Phytohormones are well known for their regulatory role in plant growth and development, and they serve as important chemical messengers, allowing plants to function during exposure to various stresses. Seed priming is a physiological technique involving seed hydration and drying to improve metabolic processes prior to germination, thereby increasing the percentage and rate of germination and improving seedling growth and crop yield under normal and various biotic and abiotic stresses. Seed priming allows plants to obtain an enhanced capacity for rapidly and effectively combating different stresses. Thus, seed priming with phytohormones has emerged as an important tool for mitigating the effects of abiotic stress. Therefore, this review discusses the potential role of priming with phytohormones to mitigate the harmful effects of abiotic stresses, possible mechanisms for how mitigation is accomplished, and roles of priming on the enhancement of crop production.

2021 ◽  
Vol 14 (2) ◽  
pp. 5-18
Author(s):  
I. V. Kosakivska ◽  

Background. Gibberellins (GAs), a class of diterpenoid phytohormones, play an important role in regulation of plant growth and development. Among more than 130 different gibberellin molecules, only a few are bioactive. GA1, GA3, GA4, and GA7 regulate plant growth through promotion the degradation of the DELLA proteins, a family of nuclear growth repressors – negative regulator of GAs signaling. Recent studies on GAs biosynthesis, metabolism, transport, and signaling, as well as crosstalk with other phytohormones and environment have achieved great progress thanks to molecular genetics and functional genomics. Aim. In this review, we focused on the role of GAs in regulation of plant gtowth in abiotic stress conditions. Results. We represented a key information on GAs biosynthesis, signaling and functional activity; summarized current understanding of the crosstalk between GAs and auxin, cytokinin, abscisic acid and other hormones and what is the role of GAs in regulation of adaptation to drought, salinization, high and low temperature conditions, and heavy metal pollution. We emphasize that the effects of GAs depend primarily on the strength and duration of stress and the phase of ontogenesis and tolerance of the plant. By changing the intensity of biosynthesis, the pattern of the distribution and signaling of GAs, plants are able to regulate resistance to abiotic stress, increase viability and even avoid stress. The issues of using retardants – inhibitors of GAs biosynthesis to study the functional activity of hormones under abiotic stresses were discussed. Special attention was focused on the use of exogenous GAs for pre-sowing priming of seeds and foliar treatment of plants. Conclusion. Further study of the role of gibberellins in the acquisition of stress resistance would contribute to the development of biotechnology of exogenous use of the hormone to improve growth and increase plant yields under adverse environmental conditions.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2194
Author(s):  
Chu Lei ◽  
Muthukumar Bagavathiannan ◽  
Huiyong Wang ◽  
Shaun M. Sharpe ◽  
Wenting Meng ◽  
...  

Abiotic stresses such as drought, extreme temperature, and salinity can negatively impact seed germination and plant growth and have become major limitations to crop production. Most crops are vulnerable to abiotic stress factors during their early growth phase, especially during seed germination and seedling emergence. Rapid crop seed germination and seedling establishment is known to provide competitive advantages over weeds and improve yields. Seed osmopriming is defined as a pre-sowing treatment in which seeds are soaked in osmotic solutions to undergo the first stage of germination, but radicle protrusion has not occurred. The process of osmopriming involves prior exposure of seeds in low-water-potential solutions. Osmopriming can generate a series of pre-germination metabolic activities, increase the antioxidant system activities, and prepare the seed for radicle protrusion. Polyethylene glycol (PEG) is a popular osmopriming agent that can alleviate the negative impacts of abiotic stresses. This review summarizes research findings on crop responses to seed priming with PEG under abiotic stresses. The challenges, limitations, and opportunities of using PEG for crop seed priming are discussed with the goal of providing insights into future research towards effective application of seed priming in crop production.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Fangwei Yu ◽  
Shenyun Wang ◽  
Wei Zhang ◽  
Hong Wang ◽  
Li Yu ◽  
...  

Abstract The members of myeloblastosis transcription factor (MYB TF) family are involved in the regulation of biotic and abiotic stresses in plants. However, the role of MYB TF in phosphorus remobilization remains largely unexplored. In the present study, we show that an R2R3 type MYB transcription factor, MYB103, is involved in phosphorus (P) remobilization. MYB103 was remarkably induced by P deficiency in cabbage (Brassica oleracea var. capitata L.). As cabbage lacks the proper mutant for elucidating the mechanism of MYB103 in P deficiency, another member of the crucifer family, Arabidopsis thaliana was chosen for further study. The transcript of its homologue AtMYB103 was also elevated in response to P deficiency in A. thaliana, while disruption of AtMYB103 (myb103) exhibited increased sensitivity to P deficiency, accompanied with decreased tissue biomass and soluble P concentration. Furthermore, AtMYB103 was involved in the P reutilization from cell wall, as less P was released from the cell wall in myb103 than in wildtype, coinciding with the reduction of ethylene production. Taken together, our results uncover an important role of MYB103 in the P remobilization, presumably through ethylene signaling.


2021 ◽  
Vol 10 (1) ◽  
pp. 456-475
Author(s):  
Efat Zohra ◽  
Muhammad Ikram ◽  
Ahmad A. Omar ◽  
Mujahid Hussain ◽  
Seema Hassan Satti ◽  
...  

Abstract In the present era, due to the increasing incidence of environmental stresses worldwide, the developmental growth and production of agriculture crops may be restrained. Selenium nanoparticles (SeNPs) have precedence over other nanoparticles because of the significant role of selenium in activating the defense system of plants. In addition to beneficial microorganisms, the use of biogenic SeNPs is known as an environmentally friendly and ecologically biocompatible approach to enhance crop production by alleviating biotic and abiotic stresses. This review provides the latest development in the green synthesis of SeNPs by using the results of plant secondary metabolites in the biogenesis of nanoparticles of different shapes and sizes with unique morphologies. Unfortunately, green synthesized SeNPs failed to achieve significant attention in the agriculture sector. However, research studies were performed to explore the application potential of plant-based SeNPs in alleviating drought, salinity, heavy metal, heat stresses, and bacterial and fungal diseases in plants. This review also explains the mechanistic actions that the biogenic SeNPs acquire to alleviate biotic and abiotic stresses in plants. In this review article, the future research that needs to use plant-mediated SeNPs under the conditions of abiotic and biotic stresses are also highlighted.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1089
Author(s):  
Huimin Ren ◽  
Xiaohong Zhao ◽  
Wenjie Li ◽  
Jamshaid Hussain ◽  
Guoning Qi ◽  
...  

Programmed cell death (PCD) is a process intended for the maintenance of cellular homeostasis by eliminating old, damaged, or unwanted cells. In plants, PCD takes place during developmental processes and in response to biotic and abiotic stresses. In contrast to the field of animal studies, PCD is not well understood in plants. Calcium (Ca2+) is a universal cell signaling entity and regulates numerous physiological activities across all the kingdoms of life. The cytosolic increase in Ca2+ is a prerequisite for the induction of PCD in plants. Although over the past years, we have witnessed significant progress in understanding the role of Ca2+ in the regulation of PCD, it is still unclear how the upstream stress perception leads to the Ca2+ elevation and how the signal is further propagated to result in the onset of PCD. In this review article, we discuss recent advancements in the field, and compare the role of Ca2+ signaling in PCD in biotic and abiotic stresses. Moreover, we discuss the upstream and downstream components of Ca2+ signaling and its crosstalk with other signaling pathways in PCD. The review is expected to provide new insights into the role of Ca2+ signaling in PCD and to identify gaps for future research efforts.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 824
Author(s):  
Fredy P. Carrera ◽  
Carlos Noceda ◽  
María G. Maridueña-Zavala ◽  
Juan M. Cevallos-Cevallos

Metabolomics is a technology that generates large amounts of data and contributes to obtaining wide and integral explanations of the biochemical state of a living organism. Plants are continuously affected by abiotic stresses such as water scarcity, high temperatures and high salinity, and metabolomics has the potential for elucidating the response-to-stress mechanisms and develop resistance strategies in affected cultivars. This review describes the characteristics of each of the stages of metabolomic studies in plants and the role of metabolomics in the characterization of the response of various plant species to abiotic stresses.


Biologia ◽  
2013 ◽  
Vol 68 (4) ◽  
Author(s):  
Zhennan Zhang ◽  
Bo Wang ◽  
Dongmei Sun ◽  
Xin Deng

AbstractSmall heat shock proteins (sHSPs) are a class of molecular chaperones that bind to and prevent aggregation of proteins. To assess the potential role of sHSPs in protection against abiotic stresses, we conducted a screening of sHSP genes from the desiccation-tolerant resurrection plant Boea hygrometrica, which is widespread in East Asia in alkaline, calcium-rich limestone crevices. In total, 25 sHSP genes, belonging to six subgroups, were identified from the desiccated leaves of B. hygrometrica. Ten of these genes were cloned and named according to the nomenclature proposed for sHSPs. Transcripts of all these BhsHSPs were detectable in fresh leaves, but only 6 genes were induced after desiccation, and remained high during rehydration. Four of the cytosol-targeted BhsHSP genes were up-regulated under treatments, such as heat, cold, alkaline conditions, high calcium, oxidation, or application of the phytohormone abscisic acid. Together, these results demonstrate that CI and CII sHSPs, especially Bh17.9CI and Bh17.4BCII, are associated with abiotic stresses, and may function in the maintenance of protein stability, aiding in the adaptations to extreme environmental conditions in which B. hygrometrica can survive.


Author(s):  
Geoffrey Onaga ◽  
Kerstin Wydra

Abstract This chapter provides an overview of the recent significant perspectives on molecules involved in response and tolerance to drought and salinity, the 2 major abiotic stresses affecting crop production, and highlights major molecular components identified in major cereals.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Sajid Muhammad ◽  
Jingai Tan ◽  
Pingchuan Deng ◽  
Tingting Li ◽  
Haohua He ◽  
...  

Abstract Background Agricultural insects are one of the major threats to crop yield. It is a known fact that pesticide application is an extensive approach to eliminate insect pests, and has severe adverse effects on environment and ecosystem; however, there is lack of knowledge whether it could influence the physiology and metabolic processes in plants. Results Here, we systemically analyzed the transcriptomic changes in rice after a spray of two commercial pesticides, Abamectin (ABM) and Thiamethoxam (TXM). We found only a limited number of genes (0.91%) and (1.24%) were altered by ABM and TXM respectively, indicating that these pesticides cannot dramatically affect the performance of rice. Nevertheless, we characterized 1140 Differentially Expressed Genes (DEGs) interacting with 105 long non-coding RNAs (lncRNAs) that can be impacted by the two pesticides, suggesting their certain involvement in response to farm chemicals. Moreover, we detected 274 alternative splicing (AS) alterations accompanied by host genes expressions, elucidating a potential role of AS in control of gene transcription during insecticide spraying. Finally, we identified 488 transposons that were significantly changed with pesticides treatment, leading to a variation in adjacent coding or non-coding transcripts. Conclusion Altogether, our results provide valuable insights into pest management through appropriate timing and balanced mixture, these pesticides have no harmful effects on crop physiology over sustainable application of field drugs.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 192 ◽  
Author(s):  
Domenico Ronga ◽  
Elisa Biazzi ◽  
Katia Parati ◽  
Domenico Carminati ◽  
Elio Carminati ◽  
...  

Microalgae are attracting the interest of agrochemical industries and farmers, due to their biostimulant and biofertiliser properties. Microalgal biostimulants (MBS) and biofertilisers (MBF) might be used in crop production to increase agricultural sustainability. Biostimulants are products derived from organic material that, applied in small quantities, are able to stimulate the growth and development of several crops under both optimal and stressful conditions. Biofertilisers are products containing living microorganisms or natural substances that are able to improve chemical and biological soil properties, stimulating plant growth, and restoring soil fertility. This review is aimed at reporting developments in the processing of MBS and MBF, summarising the biologically-active compounds, and examining the researches supporting the use of MBS and MBF for managing productivity and abiotic stresses in crop productions. Microalgae are used in agriculture in different applications, such as amendment, foliar application, and seed priming. MBS and MBF might be applied as an alternative technique, or used in conjunction with synthetic fertilisers, crop protection products and plant growth regulators, generating multiple benefits, such as enhanced rooting, higher crop yields and quality and tolerance to drought and salt. Worldwide, MBS and MBF remain largely unexploited, such that this study highlights some of the current researches and future development priorities.


Sign in / Sign up

Export Citation Format

Share Document