Anti-coccidial and anti-apoptotic activities of palm pollen grains on Eimeria papillata-induced infection in mice

Biologia ◽  
2014 ◽  
Vol 69 (2) ◽  
Author(s):  
Mahmoud Metwaly ◽  
Mohamed Dkhil ◽  
Saleh Al-Quraishy

AbstractThe present work aimed to study the effect of palm pollen extract (PPE) as an anticoccidial and anti-apoptotic modulator during the course of murine intestinal Eimeria papillata infection. The fact that PPE has an anticoccidial efficacy against intestinal E. papillata infection in mice has been clarified by the reduction of faecal output of oocysts on day five post infection from 49.5 × 103 to 34 × 103 oocyst/g. Moreover, the number of intracellular eimerian stages of zygots and developing oocysts decreased by about 89% and that of schizonts and gamonts to 42% and 72%, respectively. E. papillata infection also induced an increase in the number of apoptotic cells from 17.5 to 122.8 apoptotic nuclei/10 villous crypt units (VCU). In addition, it caused a state of systemic inflammatory response as revealed by an elevation in levels of the pro-inflammatory biomarkers, inducible nitric oxide synthase (iNOs) and tumor necrosis factor alpha (TNF-α) from 5.3 and 78.3 to 33 pmol ml−1 and 96.3 pg ml−1 in blood, respectively, with concurrent duplication in the total leucocytic number. Upon treatment of infected mice with the aqueous PPE, the activity of iNOs was reduced by 55% and the level of TNF-α was decreased by 30%. Moreover, the total leucocytic count was significantly reduced from 9.05 × 103 to 7.8 × 103 cells/mm3. Based on our results, PPE showed both anti-coccidial, anti-inflammatory and anti-apoptotic activities. So it can be used in developing new herbal medicine against animal coccidiosis and may be suitable agent for treating eimeriosis associated inflammatory response.

2010 ◽  
Vol 78 (7) ◽  
pp. 3168-3176 ◽  
Author(s):  
Rogelio Hernandez Pando ◽  
Leon Diana Aguilar ◽  
Issar Smith ◽  
Riccardo Manganelli

ABSTRACT Tuberculosis is still one of the main challenges to human global health, leading to about two million deaths every year. One of the reasons for its success is the lack of efficacy of the widely used vaccine Mycobacterium bovis BCG. In this article, we analyze the potential use of an attenuated mutant of Mycobacterium tuberculosis H37Rv lacking the sigma factor σE as a live vaccine. We have demonstrated that BALB/c mice infected by the intratracheal route with this mutant strain showed significantly higher survival rates and less tissue damage than animals infected with the parental or complemented mutant strain. Although animals infected with the sigE mutant had low bacillary loads, their lungs showed significantly higher production of the protective factors gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), inducible nitric oxide synthase (iNOS), and β-defensins than those of animals infected with the parental or complemented mutant strain. Moreover, we demonstrate that the sigE mutant, when inoculated subcutaneously, was more attenuated than BCG in immunodeficient nude mice, thus representing a good candidate for a novel attenuated live vaccine strain. Finally, when we used the sigE mutant as a subcutaneous vaccine, it was able to induce a higher level of protection than did BCG with both H37Rv and a highly virulent strain of M. tuberculosis (Beijing code 9501000). Taken together, our findings suggest that the sigE mutant is a very promising strain for the development of a new vaccine against tuberculosis.


2006 ◽  
Vol 74 (11) ◽  
pp. 6100-6107 ◽  
Author(s):  
Daniel Engel ◽  
Ulrich Dobrindt ◽  
André Tittel ◽  
Petra Peters ◽  
Juliane Maurer ◽  
...  

ABSTRACT The role of dendritic cells (DC) in urinary tract infections (UTI) is unknown. These cells contribute directly to the innate defense against various viral and bacterial infections. Here, we studied their role in UTI using an experimental model induced by transurethral instillation of the uropathogenic Escherichia coli (UPEC) strain 536 into C57BL/6 mice. While few DC were found in the uninfected bladder, many had been recruited after 24 h, mostly to the submucosa and uroepithelium. They expressed markers of activation and maturation and exhibited the CD11b+ F4/80+ CD8− Gr-1− myeloid subtype. Also, tumor necrosis factor alpha (TNF-α)- and inducible nitric oxide synthase (iNOS)-producing CD11bINT DC (Tip-DC) were detected, which recently were proposed to be critical in the defense against bacterial infections. However, Tip-DC-deficient CCR2−/− mice did not show reduced clearance of UPEC from the infected bladder. Moreover, clearance was also unimpaired in CD11c-DTR mice depleted of all DC by injection of diphtheria toxin. This may be explained by the abundance of granulocytes and of iNOS- and TNF-α-producing non-DC that were able to replace Tip-DC functionality. These findings demonstrate that some of the abundant DC recruited in UTI contributed innate immune effector functions, which were, however, dispensable in the microenvironment of the bladder.


2009 ◽  
Vol 78 (3) ◽  
pp. 1193-1201 ◽  
Author(s):  
Verónica I. Landoni ◽  
Marcelo de Campos-Nebel ◽  
Pablo Schierloh ◽  
Cecilia Calatayud ◽  
Gabriela C. Fernandez ◽  
...  

ABSTRACT Hemolytic-uremic syndrome (HUS) is generally caused by Shiga toxin (Stx)-producing Escherichia coli. Endothelial dysfunction mediated by Stx is a central aspect in HUS development. However, inflammatory mediators such as bacterial lipopolysaccharide (LPS) and polymorphonuclear neutrophils (PMN) contribute to HUS pathophysiology by potentiating Stx effects. Acute renal failure is the main feature of HUS, but in severe cases, patients can develop neurological complications, which are usually associated with death. Although the mechanisms of neurological damage remain uncertain, alterations of the blood-brain barrier associated with brain endothelial injury is clear. Astrocytes (ASTs) are the most abundant inflammatory cells of the brain that modulate the normal function of brain endothelium and neurons. The aim of this study was to evaluate the effects of Stx type 1 (Stx1) alone or in combination with LPS in ASTs. Although Stx1 induced a weak inflammatory response, pretreatment with LPS sensitized ASTs to Stx1-mediated effects. Moreover, LPS increased the level of expression of the Stx receptor and its internalization. An early inflammatory response, characterized by the release of tumor necrosis factor alpha (TNF-α) and nitric oxide and PMN-chemoattractant activity, was induced by Stx1 in LPS-sensitized ASTs, whereas activation, evidenced by higher levels of glial fibrillary acid protein and cell death, was induced later. Furthermore, increased adhesion and PMN-mediated cytotoxicity were observed after Stx1 treatment in LPS-sensitized ASTs. These effects were dependent on NF-κB activation or AST-derived TNF-α. Our results suggest that TNF-α is a pivotal effector molecule that amplifies Stx1 effects on LPS-sensitized ASTs, contributing to brain inflammation and leading to endothelial and neuronal injury.


2021 ◽  
Vol 9 (A) ◽  
pp. 468-472
Author(s):  
Nuraiza Meutia ◽  
Lokot Donna Lubis ◽  
Eka Roina Megawati

BACKGROUND: Macrophages have been widely used for in vitro studies. Despite different types and doses of stimulatory agents that have been tested, there is no consensus for the method. AIM: This study was aimed to determine a sufficient dose of lipopolysaccharide (LPS) to stimulate inflammatory response in macrophages. METHODS: Whole blood was collected from four donors after written informed consent. The monocytes were isolated from peripheral blood mononuclear cells and stimulated with macrophage colony-stimulating factor, LPS, and Interferon-gamma for 6 days until differentiated into macrophages. The production of Tumor necrosis factor-alpha (TNF-α) and Interleukin-6 (IL-6) were quantified after 24-h further stimulation with 100 ng/mL and 2 μg/mL of LPS. RESULTS: Both doses increased TNF-α _production compare to their controls, but not statistically different (p > 0.05). There were also no differences in IL-6 production between treatments, 56.55 ± 32.30 pg/mL and 70.96 ± 65.08 pg/mL, respectively. CONCLUSION: A dose of 100 ng/mL of LPS was sufficient to stimulate inflammatory response in human monocyte-derived macrophages. A 24-h duration of macrophage stimulation was sufficient to observed the production TNF-α.


Sign in / Sign up

Export Citation Format

Share Document