scholarly journals Assessment of occupational internal exposure to beta emitters from the nuclear reactor primary coolant circuit

2012 ◽  
Vol 18 (2) ◽  
pp. 41-47 ◽  
Author(s):  
Tomasz Pliszczyński ◽  
Katarzyna Ciszewska ◽  
Małgorzata Dymecka ◽  
Jakub Ośko ◽  
Zbigniew Haratym

Fission products of 235U or isotopes from activation may appear in technological waters at normal operation of a research reactor. Therefore, reactor cooling water may contain a number of beta radioactive isotopes including yttrium and strontium isotopes, which can pose potential hazard to reactor personnel. In order to asses internal exposure urinalysis is carried out. This work presents the method of sample preparation and measurement used by Radiation Protection Measurements Laboratory (RPLM) of the National Centre for Nuclear Research (NCNR). Method of various isotopes of yttrium and Sr-90 activity calculation is also shown. Determination of these isotopes activities in urine sample allows estimating the effective doses

2005 ◽  
Vol 3 (1) ◽  
pp. 106-117 ◽  
Author(s):  
Anikó Kerkápoly ◽  
Nóra Vajda ◽  
Tamás Pintér ◽  
Pintér Csordás

AbstractThe increase of activities of fission products and transmutation products in the primary coolant of a nuclear power plant indicates the presence of fuel rod failures. The measurement of the activity concentration of the primary coolant was able to detect fuel failures in the reactor core. Microanalytical methods for examining individual hot particles have been developed and applied to fuel failure detection under normal operation conditions as well as during the severe fuel damage that occurred in the cleaning tank incident at Unit 2 of NPP Paks in April 2003. Several faulty fuel rods can be detected simultaneously by the characterization of individual hot particles originating from the primary water. The analysis of particles originating from the damaged fuels provides information relating to the dissolution process of the fuel debris.


Author(s):  
Zhipeng Chen ◽  
Fei Xie ◽  
Yanhua Zheng ◽  
Lei Shi ◽  
Fu Li

High temperature gas-cooled reactor (HTGR), especially the pebble-bed core type reactor, will inevitably cause the wear the graphite components and generate graphite dust in the core. The graphite dust is taken away by helium coolant and deposited on the surface of the primary circuit, and the fission products may be absorbed on the dust. Since it is possible that the fission products are released with dust under the accident conditions such as depressurization events, they have a potential hazard of radiation exposure to the environment. The objective of this paper is to develop a code for calculating the behaviour of graphite dust in the primary circuit of HTGR. The paper is focused on development of models for predicting the deposition rates of the dust. The purpose of the work is to estimate the amount and distribution of deposited dust during plant life time, which was assumed to be 40 full-power years. The result will lay the foundation for further studies of fission products releasing and interaction with dust under accident conditions.


Author(s):  
M. K. Miller ◽  
J. Bentley ◽  
S. S. Brenner ◽  
J. A. Spitznagel

The long term mechanical integrity of the pipes used to carry the primary cooling water in a pressurized water nuclear reactor is of the utmost importance for safe operation. A combined atom probe field-ion microscopy (APFIM) and transmission electron microscopy (TEM) study was performed to characterize the microstructure of this cast stainless steel and to determine the changes that occur during long-term low-temperature thermal aging.The material used in this investigation was a commercial CF 8 type stainless steel with a bulk chemical composition as given in Table 1. The steel was examined in the as-cast, unaged condition and also after aging for 7500 h at 673K. This temperature is 100K higher than the normal service temperature and was chosen to accelerate the microstructural changes that may occur during service. As these pipes are external to the reactor they are not exposed to any significant radiation that may influence the aging behavior.


Author(s):  
Bruno Gonfiotti ◽  
Sandro Paci

The estimation of Fission Products (FPs) release from the containment system of a nuclear plant to the external environment during a Severe Accident (SA) is a quite complex task. In the last 30–40 years several efforts were made to understand and to investigate the different phenomena occurring in such a kind of accidents in the primary coolant system and in the containment. These researches moved along two tracks: understanding of involved phenomenologies through the execution of different experiments, and creation of numerical codes capable to simulate such phenomena. These codes are continuously developed to reflect the actual SA state-of-the-art, but it is necessary to continuously check that modifications and improvements are able to increase the quality of the obtained results. For this purpose, a continuous verification and validation work should be carried out. Therefore, the aim of the present work is to re-analyze the Phébus FPT-1 test employing the ASTEC (F) and MELCOR (USA) codes. The analysis focuses on the stand-alone containment aspects of the test, and three different modellisations of the containment vessel have been developed showing that at least 15/20 Control Volumes (CVs) are necessary for the spatial schematization to correctly predict thermal-hydraulics and the aerosol behavior. Furthermore, the paper summarizes the main thermal-hydraulic results, and presents different sensitivity analyses carried out on the aerosols and FPs behavior.


2021 ◽  
Vol 1024 ◽  
pp. 127-133
Author(s):  
Matteo Ferrari ◽  
Aldo Zenoni ◽  
Yong Joong Lee ◽  
Alberto Andrighetto

Lubricants and O-rings are necessarily used for the construction of many accelerator-driven facilities as spallation sources or facilities for the production of radioactive isotopes. During operation, such component will absorb high doses of mixed neutron and gamma radiation, that can degrade their mechanical and structural properties. Experimental radiation damage tests of these components are mandatory for the construction of the facility. Methodologies for irradiation in nuclear reactor mixed fields and post-irradiation examination of lubricating oils, greases and O-rings were developed and are here presented. Samples were characterized with standard mechanical and physical-chemical tests. Parametric studies on the dose rate effects have been performed on O-rings. A case studies for a specific O-ring application in a gate valve has been developed. Some of the tested samples showed a dramatic change of their properties with dose, while others remain stable. Results were collected on nine commercial greases, on one oil and on four commercial elastomeric O-rings. The most radiation resistant among the selected products are now considered for application in facilities under construction. The main mechanisms of neutron and gamma radiation damage on these polymers were investigated at the mechanical and structural level.


Author(s):  
Rainer Moormann

The AVR pebble bed reactor (46 MWth) was operated 1967–1988 at coolant outlet temperatures up to 990°C. Also because of a lack of other experience the AVR operation is a basis for future HTRs. This paper deals with insufficiently published unresolved safety problems of AVR and of pebble bed HTRs. The AVR primary circuit is heavily contaminated with dust bound and mobile metallic fission products (Sr-90, Cs-137) which create problems in current dismantling. The evaluation of fission product deposition experiments indicates that the end of life contamination reached several percent of a single core inventory. A re-evaluation of the AVR contamination is performed in order to quantify consequences for future HTRs: The AVR contamination was mainly caused by inadmissible high core temperatures, and not — as presumed in the past — by inadequate fuel quality only. The high AVR core temperatures were detected not earlier than one year before final AVR shut-down, because a pebble bed core cannot be equipped with instruments. The maximum core temperatures were more than 200 K higher than precalculated. Further, azimuthal temperature differences at the active core margin were observed, as unpredictable hot gas currents with temperatures > 1100°C. Despite of remarkable effort these problems are not yet understood. Having the black box character of the AVR core in mind it remains uncertain whether convincing explanations can be found without major experimental R&D. After detection of the inadmissible core temperatures, the AVR hot gas temperatures were strongly reduced for safety reasons. Metallic fission products diffuse in fuel kernel, coatings and graphite and their break through takes place in long term normal operation, if fission product specific temperature limits are exceeded. This is an unresolved weak point of HTRs in contrast to other reactors and is particularly problematic in pebble bed systems with their large dust content. Another disadvantage, responsible for the pronounced AVR contamination, lies in the fact that activity released from fuel elements is distributed in HTRs all over the coolant circuit surfaces and on graphitic dust and accumulates there. Consequences of AVR experience on future reactors are discussed. As long as pebble bed intrinsic reasons for the high AVR temperatures cannot be excluded they have to be conservatively considered in operation and design basis accidents. For an HTR of 400 MWth, 900°C hot gas temperature, modern fuel and 32 fpy the contaminations are expected to approach at least the same order as in AVR end of life. This creates major problems in design basis accidents, for maintenance and dismantling. Application of German dose criteria on advanced pebble bed reactors leads to the conclusion that a pebble bed HTR needs a gas tight containment even if inadmissible high temperatures as observed in AVR are not considered. However, a gas tight containment does not diminish the consequences of the primary circuit contamination on maintenance and dismantling. Thus complementary measures are discussed. A reduction of demands on future reactors (hot gas temperatures, fuel burn-up) is one option; another one is an elaborate R&D program for solution of unresolved problems related to operation and design basis accidents. These problems are listed in the paper.


Author(s):  
Ahmad Moghrabi ◽  
David Raymond Novog

The Canadian pressure-tube super critical water-cooled reactor (PT-SCWR) is an advanced generation IV reactor concept which is considered as an evolution of the conventional Canada Deuterium Uranium (CANDU) reactor that includes both pressure tubes and a low temperature and pressure heavy water moderator. The Canadian PT-SCWR fuel assembly utilizes a plutonium and thorium fuel mixture with supercritical light water coolant flowing through the high-efficiency re-entrance channel (HERC). In this work, the impact of fuel depletion on the evolution of lattice physics phenomena was investigated starting from fresh fuel to burnup conditions (25 MW d kg−1 [HM]) through sensitivity and uncertainty analyses using the lattice physics modules in standardized computer analysis for licensing evaluation (SCALE). Given the evolution of key phenomena such as void reactivity in traditional CANDU reactors with burnup, this study focuses on the impact of fission products, 233U breeding, and minor actinides on fuel performance. The work shows that the most significant change in fuel properties with burnup is the depletion of fission isotopes of Pu and the buildup of high-neutron cross section fission products, resulting in a decrease in cell k∞ with burnup as expected. Other impacts such as the presence of protactinium and uranium-233 are also discussed. When the feedback coefficients are assessed in terms of reactivity, there is considerable variation as a function of fuel depletion; however, when assessed as Δk (without normalization to the reference reactivity which changes with burnup), the net changes are almost invariant with depletion.


2013 ◽  
Vol 28 (1) ◽  
pp. 18-24
Author(s):  
Sayedeh Mirmohammadi ◽  
Morteza Gharib ◽  
Parnian Ebrahimzadeh ◽  
Reza Amrollahi

A hot water layer system (HWLS) is a novel system for reducing radioactivity under research reactor containment. This system is particularly useful in pool-type research reactors or other light water reactors with an open pool surface. The main purpose of a HWLS is to provide more protection for operators and reactor personnel against undesired doses due to the radio- activity of the primary loop. This radioactivity originates mainly from the induced radioactivity contained within the cooling water or probable minute leaks of fuel elements. More importantly, the bothersome radioactivity is progressively proportional to reactor power and, thus, the HWLS is a partial solution for mitigating such problems when power upgrading is planned. Following a series of tests and checks for different parameters, a HWLS has been built and put into operation at the Tehran research reactor in 2009. It underwent a series of comprehensive tests for a period of 6 months. Within this time-frame, it was realized that the HWLS could provide a better protection for reactor personnel against prevailing radiation under containment. The system is especially suitable in cases of abnormality, e. g. the spread of fission products due to fuel failure, because it prevents the mixing of pollutants developed deep in the pool with the upper layer and thus mitigates widespread leakage of radioactivity.


2012 ◽  
Vol 27 (3) ◽  
pp. 229-238
Author(s):  
Ali Sidi ◽  
Zaki Boudali ◽  
Rachid Salhi

The thermal-hydraulic study presented here relates to a channel of a nuclear reactor core. This channel is defined as being the space between two fuel plates where a coolant fluid flows. The flow velocity of this coolant should not generate vibrations in fuel plates. The aim of this study is to know the distribution of the temperature in the fuel plates, in the cladding and in the coolant fluid at the critical velocities of Miller, of Wambsganss, and of Cekirge and Ural. The velocity expressions given by these authors are function of the geometry of the fuel plate, the mechanical characteristics of the fuel plate?s material and the thermal characteristics of the coolant fluid. The thermal-hydraulic study is made under steady-state; the equation set-up of the thermal problem is made according to El Wakil and to Delhaye. Once the equation set-up is validated, the three critical velocities are calculated and then used in the calculations of the different temperature profiles. The average heat flux and the critical heat flux are evaluated for each critical velocity and their ratio reported. The recommended critical velocity to be used in nuclear channel calculations is that of Wambsganss. The mathematical model used is more precise and all the physical quantities, when using this critical velocity, stay in safe margins.


2018 ◽  
Vol 22 (2) ◽  
pp. 1149-1161 ◽  
Author(s):  
Maria Anish ◽  
Balakrishnan Kanimozh

The heat produced in the nuclear reactor due to fission reaction must be kept in control or else it will damage the components in the reactor core. Nuclear plants are using water for the operation dissipation of heat. Instead, some chemical substances which have higher heat transfer coefficient and high thermal conductivity. This experiment aims to find out how efficiently a nanofluid can dissipate heat from the reactor vault. The most commonly used nanofluid is Al2O3 nanoparticle with water or ethylene as base fluid. The Al2O3 has good thermal property and it is easily available. In addition, it can be stabilized in various PH levels. The nanofluid is fed into the reactor?s coolant circuit. The various temperature distribution leads to different characteristic curve that occurs on various valve condition leading to a detailed study on how temperature distribution carries throughout the cooling circuit. As a combination of Al2O3 as a nanoparticle and therminol 55 as base fluid are used for the heat transfer process. The Al2O3 nanoparticle is mixed in therminol 55 at 0.05 vol.% concentration. Numerical analysis on the reactor vault model was carried out by using ABAQUS and the experimental results were compared with numerical results.


Sign in / Sign up

Export Citation Format

Share Document