scholarly journals Experimental study of heat transfer through cooling water circuit in a reactor vault by using Al2O3 nano fluid

2018 ◽  
Vol 22 (2) ◽  
pp. 1149-1161 ◽  
Author(s):  
Maria Anish ◽  
Balakrishnan Kanimozh

The heat produced in the nuclear reactor due to fission reaction must be kept in control or else it will damage the components in the reactor core. Nuclear plants are using water for the operation dissipation of heat. Instead, some chemical substances which have higher heat transfer coefficient and high thermal conductivity. This experiment aims to find out how efficiently a nanofluid can dissipate heat from the reactor vault. The most commonly used nanofluid is Al2O3 nanoparticle with water or ethylene as base fluid. The Al2O3 has good thermal property and it is easily available. In addition, it can be stabilized in various PH levels. The nanofluid is fed into the reactor?s coolant circuit. The various temperature distribution leads to different characteristic curve that occurs on various valve condition leading to a detailed study on how temperature distribution carries throughout the cooling circuit. As a combination of Al2O3 as a nanoparticle and therminol 55 as base fluid are used for the heat transfer process. The Al2O3 nanoparticle is mixed in therminol 55 at 0.05 vol.% concentration. Numerical analysis on the reactor vault model was carried out by using ABAQUS and the experimental results were compared with numerical results.

2017 ◽  
Vol 39 (4) ◽  
pp. 55-60
Author(s):  
A. A. Avramenko ◽  
N. P. Dmitrenko ◽  
М. M. Kovetskaya ◽  
Yu. Yu. Kovetskaya

Heat and mass transfer in a model of the core of a nuclear reactor with spherical fuel elements and a helium coolant was studied. The effect of permeability of the pebble bed zone and geometric parameters on the temperature distribution of the coolant in the reactor core is analyzed.  


Author(s):  
Leila Choobineh ◽  
Dereje Agonafer ◽  
Ankur Jain

Heterogeneous integration in microelectronic systems using interposer technology has attracted significant research attention in the past few years. Interposer technology is based on stacking of several heterogeneous chips on a common carrier substrate, also referred to as the interposer. Compared to other technologies such as System-on-Chip (SoC) or System-in-Package (SiP), interposer-based integration offers several technological advantages. However, the thermal management of an interposer-based system is not well understood. The presence of multiple heat sources in various die and the interposer itself needs to be accounted for in any effective thermal model. While a finite-element based simulation may provide a reasonable temperature prediction tool, an analytical solution is highly desirable for understanding the fundamentals of the heat transfer process in interposers. In this paper, we describe our recent work on analytical modeling of heat transfer in interposer-based microelectronic systems. The basic governing energy conservation equations are solved to derive analytical expressions for the temperature distribution in an interposer-based microelectronic system. These solutions are combined with an iterative approach to provide the three-dimensional temperature field in an interposer. Results are in excellent agreement with finite-element solutions. The analytical model is utilized to study the effect of various parameters on the temperature field in an interposer system. Results from this work may be helpful in the thermal design of microelectronic systems containing interposers.


Author(s):  
F. Pahuamba-Valdez ◽  
E. Mayoral-Villa ◽  
C. E. Alvarado-Rodríguez ◽  
J. Klapp ◽  
A. M. Gómez-Torres ◽  
...  

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Miao Tian ◽  
Jun Li

PurposeThe purpose of this study is to determine the effect of ventilation openings and fire intensity on heat transfer and fluid flow within the microclimate between 3D human body and clothing.Design/methodology/approachOn account of interaction effects of fire and ventilation openings on heat transfer process, a 3D transient computational fluid dynamics model considering the real shape of human body and clothing was developed. The model was validated by comparing heat flux history and distribution with experimental results. Heat transfer modes and fluid flow were investigated under three levels of fire intensity for the microclimate with ventilation openings and closures.FindingsTemperature distribution on skin surface with open microclimate was heavily depended on the heat transfer through ventilation openings. Higher temperature for the clothing with confined microclimate was affected by the position and direction of flames injection. The presence of openings contributed to the greater velocity at forearms, shanks and around neck, which enhanced the convective heat transfer within microclimate. Thermal radiation was the dominant heat transfer mode within the microclimate for garment with closures. On the contrary, convective heat transfer within microclimate for clothing with openings cannot be neglected.Practical implicationsThe findings provided fundamental supports for the ease and pattern design of the improved thermal protective systems, so as to realize the optimal thermal insulation of the microclimate on the garment level in the future.Originality/valueThe outcomes broaden the insights of results obtained from the mesoscale models. Different high skin temperature distribution and heat transfer modes caused by thermal environment and clothing structure provide basis for advanced thermal protective clothing design.


2012 ◽  
Vol 512-515 ◽  
pp. 2171-2174 ◽  
Author(s):  
Quan Ying Yan ◽  
Ran Huo ◽  
Li Li Jin

Physical and numerical models of the radiant ceiling cooling system were built and numerically simulated. The results showed that the lower the temperature of cooling water is, the lower surface temperature the ceiling has, and the bigger the cooling capacity is. The bigger the depth of tubes is, the higher the surface temperature and the smaller the cooling capacity. The differences are not evident. The bigger the distance of tubes is, the bigger the surface temperature is and the smaller the cooling capacity is. The diameter of tubes has a few influences on the surface temperature and the cooling capacity. Results in this paper can provide basis and guide for the design of the project, the selection of parameters and the feasibility of the system.


Author(s):  
Jie Liu ◽  
Lei Gao ◽  
Huan Chen ◽  
Zeng-hui Wang ◽  
Wen-qiang Lu

The steady-state phase distribution and the structural parameters have been taken as the input for the nuclear physics calculation in the ADS windowless spallation target. The distribution of the extreme large power density of the heat load is imported back as the source term in the energy equation. Then temperature distribution is obtained based on the flow process and heat transfer. The preliminary results show that the temperature distribution reaches the steady-state and its shape is like the broken wings of the butterfly. This is very important for the further design and optimization of the ADS windowless spallation target. So the two-way coupling simulation of the heat transfer process is successfully performed between the computational fluid dynamics and the nuclear physics simulation.


2018 ◽  
Author(s):  
Dessy Agustina Sari

Indicator overheat on robot transformer of spot welding was gun thermos alarm. Thermostat which adheringin the machine could be shut down the robot if this component detected the excessive warm below the standard operation. Impurities (scale, and deposit) existence caused heat transfer process disturbed, exchanged thermal between cold and hot water. This research methods were replacement part filler of the cooling tower and flushing the pipeline by chemical. The result showed a step progressing which cooling water reached the standard temperature, 30oC. Performance spot welding was being better so time production worked normally.


Author(s):  
Haibo Ma ◽  
Kaile Tang ◽  
Rui Liu ◽  
Michael Lowry ◽  
Armin Silaen ◽  
...  

In the steel continuous casting process, cooling water is directly injected through multiple rows of nozzles to remove heat from the slab to allow the slab to solidify in secondary cooling. Effective heat removal from the slab without causing slab cracking and deformation is desired. The present study focuses on developing a reliable numerical model which can accurately predict the impingement and heat transfer between water droplet and solid slab. The flat fan atomizer is chosen as a representative nozzle to be simulated. The spray pattern on the slab surface, as well as the impingement behaviors of water droplets, are obtained through an Eulerian-Lagrangian approach. The wall jet model coupled with modified evaporation rate depending on the droplet Weber number has been applied in the numerical model. A series of parametric studies have been performed to investigate the effects of spray direction, standoff distance, and distance between adjacent nozzles on the impingement heat transfer process. Simulation results reveal that intense cooling effects can be found in the center of the spray, where the concentration of droplets is the highest regardless of the spray direction. Double the standoff distance can reduce the heat transfer coefficient on slab surface by 10%. Finally, the distance between two adjacent nozzles should be adjusted to be smaller than the standoff distance in order to avoid the “fountain” effect induced by the collision of the two neighboring wall jets.


2018 ◽  
Vol 240 ◽  
pp. 05012
Author(s):  
Piotr Kopeć ◽  
Beata Niezgoda-Żelasko

This paper analyses the mixed convection process in a fanless evaporator of an air heat pump. The text of the paper shows the authors’ experimental studies results of the temperature distribution and the local values of heat transfer coefficients on the outer surface of vertical tubes with longitudinal fins for the case of mixed convection and fins of a specific shape of their cross-section (prismatic, wavy fins). The experimental studies include the air velocities wa=2,3 m/s and the temperature differences between air and the refrigerant inside the heat exchanger tubes which is ΔT=24-40K. The results obtained were used for verification of CFD modeling of the heat transfer process for the discussed case of heat transfer and the geometry of the finned surface. The numerical analysis was performed for: the temperature distribution along the fin height, the tube perimeter and height, the distribution of local heat transfer coefficients on the finned tube perimeter and along its height. The simulated calculations were used to verify the method of determination of fin efficiency.


Sign in / Sign up

Export Citation Format

Share Document