scholarly journals Effect of Different Types of Recovery on Blood Lactate Removal After Maximum Exercise

2011 ◽  
Vol 18 (2) ◽  
pp. 105-111 ◽  
Author(s):  
Jacielle Ferreira ◽  
Rodrigo Da Silva Carvalho ◽  
Thiago Barroso ◽  
Leszek Szmuchrowski ◽  
Dariusz Śledziewski

Effect of Different Types of Recovery on Blood Lactate Removal After Maximum ExerciseIntroduction. Despite physiological changes caused by immersion in liquid medium, few studies have been conducted to determine the kinetics of blood lactate removal under these conditions. The aim of this study was to verify the effect of active recovery, using a specific water bike, on the blood lactate concentration after maximum intensity exercise. Material and method. Ten healthy cycling athletes performed an Anaerobic Threshold Test by Heart Rate (HR) on a bicycle ergometer and an Anaerobic Threshold Test by Subjective Effort Perception on an aquatic bicycle ergometer. Three maximal test was performed immediately before each recovery type, in three different days: Passive Recovery on Land - PRL (horizontal position for 60 minutes), Passive Recovery in the Water - PRW (horizontal position, with the help of floats, in swimming pool for 60 minutes) and Active Recovery in the Water - ARW (the volunteer performed exercises on a water bicycle to an intensity corresponding to 85% of the intensity of LA in water, for 30 minutes, and remained in the same position of the PRW for another 30 minutes). Blood samples were collected 5, 15, 30 and 60 minutes after the maximal test, for lactate analysis. Results. The [La] blood did not show the difference between the three types of recovery at 5th min. From 15th min on, the difference between the ARW and the other two types of passive recovery was significant, and the ARW showed lower values. There was no significant difference between the PRW and PRL. Conclusion. Mere immersion in water is not enough to maximize the removal of blood lactate. This study demonstrates that active recovery held in water is effective for the removal of blood lactate in cyclists.

1987 ◽  
Vol 253 (3) ◽  
pp. E305-E311 ◽  
Author(s):  
E. M. Peters Futre ◽  
T. D. Noakes ◽  
R. I. Raine ◽  
S. E. Terblanche

High-intensity intermittent bicycle exercise was used to deplete muscle glycogen levels by 70% and elevate blood lactate levels to greater than 13.0 mmol/l. Thereafter subjects either cycled with one leg for 45 min followed by 45 min of passive recovery (partially active recovery) or rested for 90 min (passive recovery). During the first 45 min of partially active recovery 1) blood lactate (P less than 0.05) and pH levels (P less than 0.05) returned more rapidly to preexercise values than during passive recovery, 2) the rate of net glycogen resynthesis (0.28 mumol . g-1 . min-1) was the same in both legs, and 3) muscle lactate levels were significantly lower (P less than 0.05) in the passive than in the active leg. Thereafter the rate of net muscle glycogen resynthesis was unchanged (0.26 mumol . g-1 . min-1) and lactate removal could theoretically account for only 18% of the glycogen resynthesized. Overall, the rate of muscle glycogen resynthesis and muscle lactate removal was not different from that measured during passive recovery. After high-intensity exercise 1) glycogen repletion is not impeded by light exercise, and 2) blood glucose is an important substrate for glycogen resynthesis.


2003 ◽  
Vol 28 (2) ◽  
pp. 240-256 ◽  
Author(s):  
Monèm Jemni ◽  
William A. Sands ◽  
Françoise Friemel ◽  
Paul Delamarche

The purpose of this study was to investigate the effect of two recovery strategies between men's gymnastics events on blood lactate removal (BL) and performance as rated by expert "blind" judges. Twelve male gymnasts (21.8 ± 2.4 years) participated. The sessions were composed of routine performances in the six Olympic events, which were separated by 10 min of recovery. All gymnasts performed two recovery protocols between events on separate days: Rest protocol, 10 min rest in a sitting position; combined protocol, 5 min rest and 5 min self-selected active recovery. Three blood samples were taken at 2, 5, and 10 min following each event. Gymnasts produced moderate values of BL following each of the six events (2.2 to 11.6 mmolúL−1). There was moderate variability in BL values between events that could not be accounted for by the athlete's event performance. Gymnasts showed higher BL concentration (p > .05) and significantly (p < .05) higher scoring performances (as rated by a panel of certified judges) when they used a combined recovery between gymnastics events rather than a passive recovery (ΔBL = 40.51% vs. 28.76% of maximal BL, p < .05, and total score = 47.28 ± 6.82 vs. 38.39 ± 7.55, p < .05, respectively). Key words: oxidation, removal, heart rate


2008 ◽  
Vol 3 (3) ◽  
pp. 375-386 ◽  
Author(s):  
Argyris G. Toubekis ◽  
Argiro Tsolaki ◽  
Ilias Smilios ◽  
Helen T. Douda ◽  
Thomas Kourtesis ◽  
...  

Purpose:To examine the effects of active and passive recovery of various durations after a 100-m swimming test performed at maximal effort.Methods:Eleven competitive swimmers (5 males, 6 females, age: 17.3 ± 0.6 y) completed two 100-m tests with a 15-min interval at a maximum swimming effort under three experimental conditions. The recovery between tests was 15 min passive (PAS), 5 min active, and 10 min passive (5ACT) or 10 min active and 5 min passive (10ACT). Self-selected active recovery started immediately after the first test, corresponding to 60 ± 5% of the 100-m time. Blood samples were taken at rest, 5, 10, and 15 min after the first as well as 5 min after the second 100-m test for blood lactate determination. Heart rate was also recorded during the corresponding periods.Results:Performance time of the first 100 m was not different between conditions (P > .05). The second 100-m test after the 5ACT (64.49 ± 3.85 s) condition was faster than 10ACT (65.49 ± 4.63 s) and PAS (65.89 ± 4.55 s) conditions (P < .05). Blood lactate during the 15-min recovery period between the 100-m efforts was lower in both active recovery conditions compared with passive recovery (P < .05). Heart rate was higher during the 5ACT and 10ACT conditions compared with PAS during the 15-min recovery period (P < .05).Conclusion:Five minutes of active recovery during a 15-min interval period is adequate to facilitate blood lactate removal and enhance performance in swimmers. Passive recovery and/or 10 min of active recovery is not recommended.


2017 ◽  
Vol Volume 8 ◽  
pp. 155-160 ◽  
Author(s):  
Márcio Rabelo Mota ◽  
Renata Aparecida Elias Dantas ◽  
Iransé Oliveira-Silva ◽  
Marcelo Magalhães Sales ◽  
Rafael da Costa Sotero ◽  
...  

2011 ◽  
Vol 6 (1) ◽  
pp. 106-117 ◽  
Author(s):  
Jason D. Vescovi ◽  
Olesya Falenchuk ◽  
Greg D. Wells

Purpose:Blood lactate concentration, [BLa], after swimming events might be influenced by demographic features and characteristics of the swim race, whereas active recovery enhances blood lactate removal. Our aims were to (1) examine how sex, age, race distance, and swim stroke influenced [BLa] after competitive swimming events and (2) develop a practical model based on recovery swim distance to optimize blood lactate removal.Methods:We retrospectively analyzed postrace [BLa] from 100 swimmers who competed in the finals at the Canadian Swim Championships. [BLa] was also assessed repeatedly during the active recovery. Generalized estimating equations were used to evaluate the relationship between postrace [BLa] with independent variables.Results:Postrace [BLa] was highest following 100–200 m events and lowest after 50 and 1500 m races. A sex effect for postrace [BLa] was observed only for freestyle events. There was a negligible effect of age on postrace [BLa]. A model was developed to estimate an expected change in [BLa] during active recovery (male = 0; female = 1): [BLa] change after active recovery = –3.374 + (1.162 × sex) + (0.789 × postrace [BLa]) + (0.003 × active recovery distance).Conclusions:These findings indicate that swimmers competing at an elite standard display similar postrace [BLa] and that there is little effect of age on postrace [BLa] in competitive swimmers aged 14 to 29 y.


2003 ◽  
Vol 35 (Supplement 1) ◽  
pp. S317 ◽  
Author(s):  
D P. Micklewright ◽  
R Beneke ◽  
V Gladwell ◽  
M H. Sellens

2014 ◽  
Vol 40 (1) ◽  
pp. 161-169 ◽  
Author(s):  
Felipe A. S. Lopes ◽  
Valéria L. G. Panissa ◽  
Ursula F. Julio ◽  
Elton M. Menegon ◽  
Emerson Franchini

Abstract The objective of this study was to verify the effect of active and passive recovery on blood lactate concentration and power performance. Twelve male subjects were submitted to a maximal strength test in the the bench press, a maximal aerobic test in the bench step, and to four sets of bench press exercise performed as fast and as long as possible, using 80% of maximal strength when active or passive recovery was performed. The maximum number of repetitions, mean and peak power in eccentric and concentric phases were computed and blood lactate concentration was measured. Comparisons for the variables were made using a two-way variance analysis (recovery type and set numer) with repeated measures in the second factor. When significant differences were detected (p < 0.05), a Tukey post-hoc test was used. There was a main effect of set number on maximum number of repetitions (p < 0.05) (1 > 2, 3, and 4; 2 > 3 and 4; 3 > 4). Mean and peak power in both eccentric and concentric phases also differed across sets (1 > 2, 3, and 4; 2 > 4). There was also a main effect for the recovery type, with lower values (p < 0.05) observed for the active recovery compared to the passive one. It can be concluded that active recovery resulted in lower lactate concentration, but did not improve power performance in the bench press exercise.


Sign in / Sign up

Export Citation Format

Share Document